Skip to main content
Log in

A spatial weather generator based on conditional deep convolution generative adversarial nets (cDCGAN)

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

High-resolution weather data is crucial for assessing future climate change impacts on local environments, yet downscaling low-resolution Global Climate Models (GCMs) outputs and addressing associated uncertainty remain significant challenges. In this study, we propose a novel spatial weather generator using generative networks, specifically a numerical conditional deep convolutional generative adversarial network (cDCGAN), as a promising solution. The cDCGAN generates high-resolution weather data from low-resolution GCM outputs and was applied to four case areas in China under four Shared Socio-economic Pathway (SSP) scenarios. The results demonstrate the cDCGAN's accuracy, consistency, and stability, with low uncertainties. The model performs optimally in low-elevation plains and tropical regions. The cDCGAN offers advantages in uncertainty analysis over traditional downscaling methods, serving as a valuable tool for climate change analysis, response estimation, and environmental management decision-making within the spatial statistics domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The TRIMS LST dataset used for model training is provided by the Big Earth Data Platform for Three Poles that are archived at https://doi.org/10.11888/Meteoro.tpdc.271252. The GCM outputs of BCC-CSM2-MR are downloaded from https://esgf-node.llnl.gov/search/cmip6. The preprocessed datasets and model outputs are available from the corresponding author on reasonable request.

References

  • Abowarda AS, Bai L, Zhang C, Long D, Li X, Huang Q, Sun Z (2021) Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens Environ 255:112301

    Google Scholar 

  • Arunrat N, Sereenonchai S, Chaowiwat W, Wang C (2022) Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci Total Environ 807:150741

    Google Scholar 

  • Bai H, Xiao D, Wang B, Liu DL, Feng P, Tang J (2021) Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China plain. Int J Climatol 41:E171–E186

    Google Scholar 

  • Baker RE, Peña J-M, Jayamohan J, Jérusalem A (2018) Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol Let 14:20170660

    Google Scholar 

  • Burgan HI, Aksoy H (2022) Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. J Hydrol 604:127249

    Google Scholar 

  • Cai H, Shi H, Liu S, Babovic V (2021) Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: the case of central eastern continental United States. J Hydrol 37:100930

    Google Scholar 

  • Cai H, Liu S, Shi H, Zhou Z, Jiang S, Babovic V (2022) Toward improved lumped groundwater level predictions at catchment scale: mutual integration of water balance mechanism and deep learning method. J Hydrol 613:128495

    Google Scholar 

  • Chandel VS, Ghosh S (2021) Components of himalayan river flows in a changing climate. Water Resour Res 57:e2020WR027589

    Google Scholar 

  • Chen H, He X, Qing L, Wu Y, Ren C, Sheriff RE, Zhu C (2022) Real-world single image super-resolution: a brief review. Information Fusion 79:124–145

    Google Scholar 

  • Chou C, Park J, Chou E (2021) Generating high-resolution climate change projections using super-resolution convolutional LSTM neural networks 2021. In: 13th international conference on advanced computational intelligence (ICACI), p 293–298

  • Dawkins LC, Osborne JM, Economou T, Darch GJC, Stoner OR (2022) The Advanced Meteorology Explorer: a novel stochastic, gridded daily rainfall generator. J Hydrol 607:127478

    Google Scholar 

  • Deroliya P, Ghosh M, Mohanty MP, Ghosh S, Rao KHVD, Karmakar S (2022) A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions. Sci Total Environ 851:158002

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958

    Google Scholar 

  • Fatichi S, Ivanov VY, Caporali E (2011) Simulation of future climate scenarios with a weather generator. Adv Water Resour 34:448–467

    Google Scholar 

  • Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, Kriegler E, van Vuuren DP, van den Berg M, Feng L, Klein D, Calvin K, Doelman JC, Frank S, Fricko O, Harmsen M, Hasegawa T, Havlik P, Hilaire J, Hoesly R, Horing J, Popp A, Stehfest E, Takahashi K (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12:1443–1475

    Google Scholar 

  • Gocić M, Arab Amiri M (2021) Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resour Manage 35:1913–1926

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inform Process Syst 27:2672–2680

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63:139–144

    Google Scholar 

  • Guo D, Zhang Y, Gao X, Pepin N, Sun J (2021) Evaluation and ensemble projection of extreme high and low temperature events in China from four dynamical downscaling simulations. Int J Climatol 41:E1252–E1269

    Google Scholar 

  • Gutiérrez JM, Maraun D, Widmann M, Huth R, Hertig E, Benestad R, Roessler O, Wibig J, Wilcke R, Kotlarski S, San Martín D, Herrera S, Bedia J, Casanueva A, Manzanas R, Iturbide M, Vrac M, Dubrovsky M, Ribalaygua J, Pórtoles J, Räty O, Räisänen J, Hingray B, Raynaud D, Casado MJ, Ramos P, Zerenner T, Turco M, Bosshard T, Štěpánek P, Bartholy J, Pongracz R, Keller DE, Fischer AM, Cardoso RM, Soares PMM, Czernecki B, Pagé C (2019) An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. Int J Climatol 39:3750–3785

    Google Scholar 

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095

    Google Scholar 

  • Herath HMVV, Chadalawada J, Babovic V (2021) Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling. Hydrol Earth Syst Sci 25:4373–4401

    Google Scholar 

  • Inkawhich N (2019) PyTorch DCGAN tutorial. https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html. Accessed 1 June 2022

  • Iqbal Z, Shahid S, Ahmed K, Ismail T, Ziarh GF, Chung E-S, Wang X (2021) Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos Res 254:105525

    Google Scholar 

  • Isola P, Zhu J-Y, Zhou T, Efros AA (2017a) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p 1125–1134

  • Isola P, Zhu J, Zhou T, Efros AA (2017b). Image-to-image translation with conditional adversarial networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), p 5967–5976

  • Jiang S, Zheng Y, Babovic V, Tian Y, Han F (2018) A computer vision-based approach to fusing spatiotemporal data for hydrological modeling. J Hydrol 567:25–40

    Google Scholar 

  • Jiang S, Zheng Y, Wang C, Babovic V (2022) Uncovering flooding mechanisms across the contiguous united states through interpretive deep learning on representative catchments. Water Resour Res 58:e2021WR030185

    Google Scholar 

  • Kamruzzaman M, Shahid S, Islam ARMT, Hwang S, Cho J, Zaman MAU, Ahmed M, Rahman MM, Hossain MB (2021) Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: a preliminary study. Theoret Appl Climatol 145:1385–1406

    Google Scholar 

  • Khalil AF, Kwon H-H, Lall U, Kaheil YH (2010) Predictive downscaling based on non-homogeneous hidden Markov models. Hydrol Sci J 55:333–350

    Google Scholar 

  • Kreibich H, Van Loon AF, Schröter K, Ward PJ, Mazzoleni M, Sairam N, Abeshu GW, Agafonova S, AghaKouchak A, Aksoy H, Alvarez-Garreton C, Aznar B, Balkhi L, Barendrecht MH, Biancamaria S, Bos-Burgering L, Bradley C, Budiyono Y, Buytaert W, Capewell L, Carlson H, Cavus Y, Couasnon A, Coxon G, Daliakopoulos I, de Ruiter MC, Delus C, Erfurt M, Esposito G, François D, Frappart F, Freer J, Frolova N, Gain AK, Grillakis M, Grima JO, Guzmán DA, Huning LS, Ionita M, Kharlamov M, Khoi DN, Kieboom N, Kireeva M, Koutroulis A, Lavado-Casimiro W, Li H-Y, Llasat MC, Macdonald D, Mård J, Mathew-Richards H, McKenzie A, Mejia A, Mendiondo EM, Mens M, Mobini S, Mohor GS, Nagavciuc V, Ngo-Duc T, Huynh TTN, Nhi PTT, Petrucci O, Nguyen HQ, Quintana-Seguí P, Razavi S, Ridolfi E, Riegel J, Sadik MS, Savelli E, Sazonov A, Sharma S, Sörensen J, Arguello Souza FA, Stahl K, Steinhausen M, Stoelzle M, Szalińska W, Tang Q, Tian F, Tokarczyk T, Tovar C, Tran TVT, Van Huijgevoort MHJ, van Vliet MTH, Vorogushyn S, Wagener T, Wang Y, Wendt DE, Wickham E, Yang L, Zambrano-Bigiarini M, Blöschl G, Di Baldassarre G (2022) The challenge of unprecedented floods and droughts in risk management. Nature 608:80–86

    Google Scholar 

  • Lanzante JR, Dixon KW, Nath MJ, Whitlock CE, Adams-Smith D (2018) Some pitfalls in statistical downscaling of future climate. Bull Am Meteor Soc 99:791–803

    Google Scholar 

  • Legasa MN, Manzanas R, Calviño A, Gutiérrez JM (2022) A posteriori random forests for stochastic downscaling of precipitation by predicting probability distributions. Water Resour Res 58:e2021WR030272

    Google Scholar 

  • Leinonen J, Nerini D, Berne A (2021) Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network. IEEE Trans Geosci Remote Sens 59:7211–7223

    Google Scholar 

  • Lempert RJ (2021) Measuring global climate risk. Nat Clim Chang 11:805–806

    Google Scholar 

  • Li X, Babovic V (2019a) Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches. Clim Dyn 52:5775–5799

    Google Scholar 

  • Li X, Babovic V (2019b) A new scheme for multivariate, multisite weather generator with inter-variable, inter-site dependence and inter-annual variability based on empirical copula approach. Clim Dyn 52:2247–2267

    Google Scholar 

  • Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv. https://doi.org/10.48550/arXiv.1411.1784

    Article  Google Scholar 

  • O’Neill BC, Carter TR, Ebi K, Harrison PA, Kemp-Benedict E, Kok K, Kriegler E, Preston BL, Riahi K, Sillmann J, van Ruijven BJ, van Vuuren D, Carlisle D, Conde C, Fuglestvedt J, Green C, Hasegawa T, Leininger J, Monteith S, Pichs-Madruga R (2020) Achievements and needs for the climate change scenario framework. Nat Clim Chang 10:1074–1084

    Google Scholar 

  • Palmer T (2020) Short-term tests validate long-term estimates of climate change. Nature 582:185–186

    Google Scholar 

  • Parsons LA, Brennan MK, Wills RCJ, Proistosescu C (2020) Magnitudes and spatial patterns of interdecadal temperature variability in CMIP6. Geophys Res Lett 47:e2019GL086588

    Google Scholar 

  • Petrie R, Denvil S, Ames S, Levavasseur G, Fiore S, Allen C, Antonio F, Berger K, Bretonnière PA, Cinquini L, Dart E, Dwarakanath P, Druken K, Evans B, Franchistéguy L, Gardoll S, Gerbier E, Greenslade M, Hassell D, Iwi A, Juckes M, Kindermann S, Lacinski L, Mirto M, Nasser AB, Nassisi P, Nienhouse E, Nikonov S, Nuzzo A, Richards C, Ridzwan S, Rixen M, Serradell K, Snow K, Stephens A, Stockhause M, Vahlenkamp H, Wagner R (2021) Coordinating an operational data distribution network for CMIP6 data. Geosci Model Dev 14:629–644

    Google Scholar 

  • Popović P, Gocić M, Petković K, Trajković S (2023) Neural network based system in evapotranspiration time series prediction. Earth Sci Inf 16:919–928

    Google Scholar 

  • Puchko A, Link R, Hutchinson B, Kravitz B, Snyder A (2020) DeepClimGAN: a high-resolution climate data generator. arXiv. https://doi.org/10.48550/arXiv.2011.11705

    Article  Google Scholar 

  • Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv. https://doi.org/10.48550/arXiv.1511.06434

    Article  Google Scholar 

  • Saha A, Ghosh S (2020) Relative impacts of projected climate and land use changes on terrestrial water balance: a case study on ganga river basin. Front Water. https://doi.org/10.3389/frwa.2020.00012

    Article  Google Scholar 

  • Salvi K, Ghosh S, Ganguly AR (2016) Credibility of statistical downscaling under nonstationary climate. Clim Dyn 46:1991–2023

    Google Scholar 

  • Sørland SL, Brogli R, Pothapakula PK, Russo E, Van de Walle J, Ahrens B, Anders I, Bucchignani E, Davin EL, Demory ME, Dosio A, Feldmann H, Früh B, Geyer B, Keuler K, Lee D, Li D, van Lipzig NPM, Min SK, Panitz HJ, Rockel B, Schär C, Steger C, Thiery W (2021) COSMO-CLM regional climate simulations in the coordinated regional climate downscaling experiment (CORDEX) framework: a review. Geosci Model Dev 14:5125–5154

    Google Scholar 

  • Stengel K, Glaws A, Hettinger D, King RN (2020) Adversarial super-resolution of climatological wind and solar data. Proc Natl Acad Sci 117:16805–16815

    Google Scholar 

  • Sun L, Lan Y (2021) Statistical downscaling of daily temperature and precipitation over China using deep learning neural models: localization and comparison with other methods. Int J Climatol 41:1128–1147

    Google Scholar 

  • Verma A, Chandel V, Ghosh S (2022) Climate drivers of the variations of vegetation productivity in India. Environ Res Lett 17:084023

    Google Scholar 

  • Wang Z, Chen J, Hoi SCH (2019) Deep learning for image super-resolution: a survey. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.2982166

    Article  Google Scholar 

  • Wang F, Tian D, Lowe L, Kalin L, Lehrter J (2021) Deep learning for daily precipitation and temperature downscaling. Water Resour Res 57:e2020WR029308

    Google Scholar 

  • Wang B, Waters C, Anwar MR, Cowie A, Liu DL, Summers D, Paul K, Feng P (2022) Future climate impacts on forest growth and implications for carbon sequestration through reforestation in southeast Australia. J Environ Manage 302:113964

    Google Scholar 

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X (2019) The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600

    Google Scholar 

  • Xie W, Zhou B, Han Z, Xu Y (2021) Projected changes in heat waves over China: ensemble result from RegCM4 downscaling simulations. Int J Climatol 41:3865–3880

    Google Scholar 

  • Xin X, Zhang J, Zhang F, Wu T, Shi X, Li J, Chu M, Liu Q, Yan J, Ma Q, Wei M (2018) BCC BCC-CSM2MR model output prepared for CMIP6 CMIP. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.3050

    Article  Google Scholar 

  • Xiong R, Zheng Y, Chen N, Tian Q, Liu W, Han F, Jiang S, Lu M, Zheng Y (2022) Predicting dynamic riverine nitrogen export in unmonitored watersheds: leveraging insights of AI from data-rich regions. Environ Sci Technol 56:10530–10542

    Google Scholar 

  • Xiong J, Zheng Y, Zhang J, Quan F, Lu H, Zeng H (2023) Impact of climate change on coastal water quality and its interaction with pollution prevention efforts. J Environ Manage 325:116557

    Google Scholar 

  • Zhang X, Zhou J, Göttsche FM, Zhan W, Liu S, Cao R (2019) A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Trans Geosci Remote Sens 57:4670–4691

    Google Scholar 

  • Zhang X, Zhou J, Liang S, Wang D (2021) A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens Environ 260:112437

    Google Scholar 

  • Zhao Y, Xu K, Dong N, Wang H (2022) Projection of climate change impacts on hydropower in the source region of the Yangtze River based on CMIP6. J Hydrol 606:127453

    Google Scholar 

  • Zhou J, Zhang X, Zhan W, Göttsche FM, Liu S, Olesen FS, Hu W, Dai F (2017) A thermal sampling depth correction method for land surface temperature estimation from satellite passive microwave observation over barren land. IEEE Trans Geosci Remote Sens 55:4743–4756

    Google Scholar 

  • Zhou J, Zhang X, Tang W, Ding L, Ma J, Zhang X (2021) Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000–2021), In: National Tibetan Plateau/Third Pole Environment Data Center (ed) National Tibetan Plateau/Third Pole Environment Data Center

Download references

Acknowledgements

This work is supported by Key Technologies Research and Development Program (2022YFC3202701).

Funding

Key Technologies Research and Development Program (2022YFC3202701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, J., Chen, X., Chang, Y. et al. A spatial weather generator based on conditional deep convolution generative adversarial nets (cDCGAN). Clim Dyn 62, 1275–1290 (2024). https://doi.org/10.1007/s00382-023-06971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06971-9

Keywords

Navigation