Skip to main content

Advertisement

Log in

Controls of the recent precipitation anomalies in the southeastern Tibetan Plateau: from the perspective of Indian summer monsoon activities and moisture sources

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

An increasing, but spatially inhomogeneous, trend in Tibetan Plateau (TP) precipitation, and especially the precipitation anomalies in southeastern TP (TPSE), has become the subject of major scientific concern. The Indian summer monsoon (ISM) is one of the TPSE’s most important moisture sources, and its characteristics are therefore key for precipitation changes. Here we present the ISM activities (ISM onset/retreat date, ISM duration, and ISM intensity) and the percentages of varied moisture sources in TPSE, using OLR datasets and Hysplit modeling with gbl reanalysis. The recent precipitation anomalies in TPSE are analyzed with CMFD reanalysis. Major findings: (1) The ISM in TPSE generally begins later, retreats earlier, is of shorter duration, and weaker in intensity. (2) Uniformly decreasing (increasing) precipitation trends are found in TPSE for periods 1979 − 2018 and 1999 − 2018 (1979 − 1998). (3) Moistures along with the ISM are the primary controls of TPSE precipitation (~ 85% in summer); these are also verified by the generally same linear trends observed in ISM moistures and TPSE precipitation in summer. (4) The precipitation anomalies in TPSE are closely related with the ISM activities: the ISM onset date (retreat date) and its variabilities affect precipitation during May − June (September − October); precipitation during July − August correlates positively with the ISM duration and its intensity. The ISM activities impact the percentages of ISM moistures and finally affect the precipitation amount and their trends. These results will contribute to precipitation-related studies as hydrology, ecology, and paleoclimate reconstructions in TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from CMFD (http://data.tpdc.ac.cn), NOAA PSL (OLR, https://psl.noaa.gov/data/gridded/data.interp_OLR.html), and NCEP/NCAR Global Reanalysis Data Archive (gbl reanalysis, ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis/).

References

  • Bektiarso S, Dewi DR (2021) Effect of problem based learning models with 3D thinking maps on creative thinking abilities and physics learning outcomes in high school. J Phys 1832(1):012027

    Google Scholar 

  • Bell GD, Halpert MS, Ropelewski CF, Kousky VE, Douglas AV, Schnell RC, Gelman ME (1999) Climate assessment for 1998. Bull Am Meteor Soc 80(5s):S1–S48

    Article  Google Scholar 

  • Bothe O, Fraedrich K, Zhu X (2012) Tibetan Plateau summer precipitation: covariability with circulation indices. Theoret Appl Climatol 108(1):293–300

    Article  Google Scholar 

  • Cao J, Zhang WK, Tao Y (2017) Thermal configuration of the Bay of Bengal-Tibetan Plateau region and the May precipitation anomaly in Yunnan. J Clim 30(22):9303–9319

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance Qinghai-Tibet Plateau. J Geophys Res 112(2):225

    Google Scholar 

  • Cuo L, Zhang Y, Bohn TJ, Zhao L, Li J, Liu Q, Zhou B (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res 120(16):8276–8298

    Article  Google Scholar 

  • Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth System Dyna 6(1):109–124

    Article  Google Scholar 

  • Ding H, Greatbatch RJ, Latif M, Park W, Gerdes R (2013) Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J Clim 26(19):7650–7661

    Article  Google Scholar 

  • Dong W, Lin Y, Wright JS, Ming Y, Xie Y, Wang B, Luo Y, Huang W, Huang J, Wang L, Tian L, Peng Y, Xu F (2016) Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat Commun 7(1):10925

    Article  Google Scholar 

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5:13711

    Article  Google Scholar 

  • Feng L, Zhou T (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J Geophys Res. https://doi.org/10.1038/srep13711

    Article  Google Scholar 

  • Fox-Rabinovitz MS, Takacs LL, Govindaraju RC (2002) A variable-resolution stretched-grid general circulation model and data assimilation system with multiple areas of interest: Studying the anomalous regional climate events of 1998. J Geophys Res 107(24):12

    Google Scholar 

  • Gao Y, Cuo L, Zhang Y (2014) Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J Clim 27(5):1876–1893

    Article  Google Scholar 

  • Gruber A, Winston JS (1978) Earth-Atmosphere Radiative Heating Based on Noaa Scanning Radiometer Measurements. Bull Am Meteor Soc 59(12):1570–1573

    Article  Google Scholar 

  • Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39(6):1329–1348

    Article  Google Scholar 

  • Guo X, Tian L (2022) Spatial patterns and possible mechanisms of precipitation changes in recent decades over and around the Tibetan Plateau in the context of intense warming and weakening winds. Clim Dynam 59:1–22

    Article  Google Scholar 

  • Guo D, Wang H (2013) Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J Geophys Res 118(11):5216–5230

    Article  Google Scholar 

  • Guo X, Wang L, Tian L (2023a) Spatial distributions and temporal variabilities of the recent Indian Summer Monsoon Northern Boundaries in Tibetan Plateau: analysis of outgoing longwave radiation dataset and precipitation isotopes. Clim Change 176(4):43

    Article  Google Scholar 

  • Guo X, Tian L, Wang L, Zhang L (2023b) Spatiotemporal variabilities of the recent Indian Summer Monsoon activities in the Tibetan Plateau: a reanalysis of outgoing longwave radiation datasets. J Clim 36(12):3955–3970

    Article  Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X (2020) The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data 7:25. https://doi.org/10.1038/s41597-020-0369-y

    Article  Google Scholar 

  • Hrudya PH, Varikoden H, Vishnu R (2020) A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol Atmosph Phys 133:1–14

    Article  Google Scholar 

  • Hu W, Yao J, He Q, Chen J (2021) Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017. Water 13(20):2848

    Article  Google Scholar 

  • Ji Q, Yang J, Chen H (2018) Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961–2015 (In Chinese). J Glaciol Geocryol 40(6):1090–1099

    Google Scholar 

  • Jiang X, Ting M (2019) Intraseasonal variability of rainfall and its effect on interannual variability across the Indian subcontinent and the Tibetan Plateau. J Clim 32(8):2227–2245

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Kang S, Huang J, Wang F, Zhang Q, Zhang Y, Li C, Guo J (2016) Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environ Sci Technol 50(6):2859–2869

    Article  Google Scholar 

  • Keyimu M, Li Z, Liu G, Fu B, Fan Z, Wang X, Halik U (2021) Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quatern Sci Rev 251:106712

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7(12):1170–1179

    Article  Google Scholar 

  • Kuang X, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res 121(8):3979–4007

    Article  Google Scholar 

  • Kuwahara Y, Masudome Y, Paudel MR, Fujii R, Hayashi T, Mampuku M, Sakai H (2010) Controlling weathering and erosion intensity on the southern slope of the Central Himalaya by the Indian summer monsoon during the last glacial. Global Planet Change 71(1–2):73–84

    Article  Google Scholar 

  • Lai HW, Chen HW, Kukulies J, Ou T, Chen D (2021) Regionalization of seasonal precipitation over the Tibetan Plateau and associated large-scale atmospheric systems. J Clim 34(7):2635–2651

    Article  Google Scholar 

  • Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y (2013) Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J Hydrol 483:61–67

    Article  Google Scholar 

  • Li X, Wang L, Guo X, Chen D (2017a) Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int J Climatol 37(S1):1278–1284

    Article  Google Scholar 

  • Li X, Wang L, Guo X, Chen D (2017b) Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int J Climatol 37:1278–1284

    Article  Google Scholar 

  • Li L, Zhang R, Wen M, Lv J (2021) Regionally different precipitation trends over the Tibetan Plateau in the warming context: A perspective of the Tibetan Plateau vortices. Geophys Res Lett 48(11):091680

    Article  Google Scholar 

  • Liang EY, Shao XM, Xu Y (2009) Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theoret Appl Climatol 98:9–18

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteor Soc 77(6):1275–1277

    Google Scholar 

  • Liu W, Wang L, Chen D, Tu K, Ruan C, Hu Z (2016) Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Clim Dyn 46:3481–3497

    Article  Google Scholar 

  • Liu Y, Chen H, Zhang G, Sun J, Wang H (2019) The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau. Science Bulletin 64(20):1486–1489

    Article  Google Scholar 

  • Lu H, Liu G (2010) Trends in temperature and precipitation on the Tibetan Plateau, 1961–2005. Climate Res 43(3):179–190

    Article  Google Scholar 

  • Ma Z, Xu Y, Peng J, Chen Q, Wan D, He K, Shi Z, Li H (2018) Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings. Int J Remote Sens 39(12):3891–3907

    Article  Google Scholar 

  • Meng D, Dong Q, Kong F, Yin Z, Li Y, Liu J (2020) Spatio-temporal variations of water vapor budget over the Tibetan Plateau in summer and its relationship with the indo-pacific warm pool. Atmosphere 11(8):828

    Article  Google Scholar 

  • Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Chang 4(1):68–73

    Article  Google Scholar 

  • Noska R, Misra V (2016) Characterizing the onset and demise of the Indian summer monsoon. Geophys Res Lett 43(9):4547–4554

    Article  Google Scholar 

  • Pan C, Zhu B, Gao J, Kang H, Zhu T (2019) Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim Dyn 52(1–2):181–196

    Article  Google Scholar 

  • Peek EH, Park CS (2013) Effects of a multicultural education program on the cultural competence, empathy and self-efficacy of nursing students. J Korean Acad Nurs 43(5):690–696

    Article  Google Scholar 

  • Prasad VS, Hayashi T (2005) Onset and withdrawal of Indian summer monsoon. Geophys Res Lett. https://doi.org/10.1029/2005GL023269

    Article  Google Scholar 

  • Pritchard HD (2019) Asia’s shrinking glaciers protect large populations from drought stress. Nature 569(7758):649–654

    Article  Google Scholar 

  • Puviarasan N, Sharma AK, Ranalkar M, Giri RK (2015) Onset, advance and withdrawal of southwest monsoon over Indian subcontinent: A study from precipitable water measurement using ground based GPS receivers. J Atmos Solar Terr Phys 122:45–57

    Article  Google Scholar 

  • Qi Y, Zhang R, Li T, Wen M (2009) Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon. Chin Sci Bull 54(5):880–884

    Article  Google Scholar 

  • Qi WW, Zhang BP, Yao YH, Zhao F, Zhang S, He WH (2016) A topographical model for precipitation pattern in the Tibetan Plateau. J Mt Sci 13(5):763–773

    Article  Google Scholar 

  • Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97(1–2):321

    Article  Google Scholar 

  • Rajagopalan B, Molnar P (2013) Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J Geophys Res 118(3):1170–1178

    Article  Google Scholar 

  • Ren L, Duan K, Xin R (2020) Impact of future loss of glaciers on precipitation pattern: A case study from south-eastern Tibetan Plateau. Atmos Res 242:104984

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F (2008a) Influence of convective processes on the isotopic composition (delta O-18 and delta D) of precipitation and water vapor in the tropics: 2 Physical interpretation of the amount effect. J Geophys Res 113(19):148–227

    Google Scholar 

  • Risi C, Bony S, Vimeux F, Descroix L, Ibrahim B, Lebreton E, Mamadou I, Sultan B (2008b) What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys Res Lett 35(24):L24808

    Article  Google Scholar 

  • Singh P, Nakamura K (2009) Diurnal variation in summer precipitation over the central Tibetan Plateau. J Geophys Res 114(20):22

    Google Scholar 

  • Song C, Huang B, Richards K, Ke L, Hien Phan V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186

    Article  Google Scholar 

  • Song C, Wang J, Liu Y, Zhang L, Ding Y, Li Q, Shen X, Song Y, Yan Y (2022) Toward role of westerly-monsoon interplay in linking interannual variations of late spring precipitation over the southeastern Tibetan Plateau. Atmosph Sci Lett 23(3):e1074

    Article  Google Scholar 

  • Stolbova V, Surovyatkina E, Bookhagen B, Kurths J (2016) Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys Res Lett 43(8):3982–3990

    Article  Google Scholar 

  • Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y (2016) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global Planet Change 136:82–95

    Article  Google Scholar 

  • Sun J, Yang K, Guo W, Wang Y, He J, Lu H (2020) Why has the inner Tibetan Plateau become wetter sine the mid-1990s? J Clim 33(19):8507–8522

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Mashiotta TA, Henderson KA, Lin PN, Tandong Y (2006) Ice core evidence for asynchronous glaciation on the Tibetan Plateau. Quatern Int 154:3–10

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res 106(D22):28081–28088

    Article  Google Scholar 

  • Tong K, Su F, Yang D, Zhang L, Hao Z (2014) Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int J Climatol 34(2):265–285

    Article  Google Scholar 

  • Wang B, Xu X (1997) Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J Clim 10(5):1071–1085

    Article  Google Scholar 

  • Wang J, Zhang M, Wang S, Ren Z, Che Y, Qiang F, Qu D (2016) Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013. J Geog Sci 26:1277–1288

    Article  Google Scholar 

  • Wang X, Pang G, Yang M (2018) Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations. Int J Climatol 38(3):1116–1131

    Article  Google Scholar 

  • Wang Z, Wu R, Zhao P, Yao SL, Jia X (2019) Formation of snow cover anomalies over the Tibetan Plateau in cold seasons. J Geophys Res 124(9):4873–4890

    Article  Google Scholar 

  • Wang X, Ran Y, Pang G, Chen D, Su B, Chen R, Luo D (2022) Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. Earth-Sci Rev 230:104042

    Article  Google Scholar 

  • Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126(4):913–927

    Article  Google Scholar 

  • Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14(9):2457–2466

    Article  Google Scholar 

  • Xiong J, Yong Z, Wang Z, Cheng W, Li Y, Zhang H, Ye C, Yang Y (2019) Spatial and temporal patterns of the extreme precipitation across the Tibetan Plateau (1986–2015). Water 11(7):1453

    Article  Google Scholar 

  • Xu Y, Gao Y (2019) Quantification of evaporative sources of precipitation and its changes in the Southeastern Tibetan Plateau and Middle Yangtze River Basin. Atmosphere 10(8):428

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Gao S (2008) World water tower: an atmospheric perspective. Geophys Res Lett. https://doi.org/10.1029/2008GL035867

    Article  Google Scholar 

  • Xu K, Zhong L, Ma Y, Zou M, Huang Z (2020) A study on the water vapor transport trend and water vapor source of the Tibetan Plateau. Theoret Appl Climatol 140(3):1031–1042

    Article  Google Scholar 

  • Yan H, Huang J, He Y, Liu Y, Wang T, Li J (2020) Atmospheric water vapor budget and its long-term trend over the Tibetan Plateau. J Geophys Res 125(23):033297

    Article  Google Scholar 

  • Yang K, He J, Tang WJ (2010) On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric for Meteorol 150(1):38–46

    Article  Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change 109(3–4):517–534

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

    Article  Google Scholar 

  • Yang R, Zhu L, Wang J, Ju J, Ma Q, Turner F, Guo Y (2017) Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim Change 140(3–4):621–633

    Article  Google Scholar 

  • Yang M, Wang X, Pang G, Wan G, Liu Z (2019) The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth Sci Rev 190:353–369

    Article  Google Scholar 

  • Yao T, Duan K, Thompson LG, Wang N, Tian L, Xu B, Yu W (2007) Temperature variations over the past millennium on the Tibetan Plateau revealed by four ice cores. Ann Glaciol 46:362–366

    Article  Google Scholar 

  • Yao TD, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, Yang XX, Duan KQ, Zhao HB, Xu BQ, Pu JC, Lu AX, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667

    Article  Google Scholar 

  • Yao TD, Masson-Delmotte V, Gao J, Yu WS, Yang XX, Risi C, Sturm C, Werner M, Zhao HB, He Y, Ren W, Tian LD, Shi CM, Hou SG (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys 51(4):525–548

    Article  Google Scholar 

  • Yao L, Lu J, Zhang W, Qin J, Zhou C, Tran NN, Pinagé ER (2022) Spatiotemporal analysis of extreme temperature change on the Tibetan Plateau based on quantile regression. Earth Space Sci 9(11):002571

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E, Yan Y (2008) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res: Atmosph 113(7):22

    Google Scholar 

  • You Q, Fraedrich K, Ren G, Ye B, Meng X, Kang S (2012) Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theoret Appl Climatol 109:485–496

    Article  Google Scholar 

  • Zhang C (2020) Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM. Environ Res Lett 15(10):104003

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130

    Article  Google Scholar 

  • Zhang YL, Li BY, Zheng D (2014) Datasets of the boundary and area of the Tibetan Plateau. Acta Geogr Sin 69:164–168

    Google Scholar 

  • Zhang C, Tang Q, Chen D (2017a) Recent changes in the moisture source of precipitation over the Tibetan Plateau. J Clim 30(5):1807–1819

    Article  Google Scholar 

  • Zhang W, Zhou T, Zhang L (2017b) Wetting and greening Tibetan Plateau in early summer in recent decades. J Geophys Res: Atmosph 122(11):5808–5822

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D, van der Ent RJ, Liu X, Li W, Haile GG (2019) Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. J Hydrometeorol 20(2):217–229

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H, Yang K, Zhu L, Shum CK, Bolch T, Yi S, Allen S, Liang L, Chen W, Ke C (2020) Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Sci Rev 208:103269

    Article  Google Scholar 

  • Zhang YL, Li BY, Liu LS, Zheng D (2021) Redetermine the region and boundaries of Tibetan Plateau. Geogr Res 40(6):1543–1553

    Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Grant Nos. 42071090, 41988101, 42271143, 42201141, 41701080). We thank the National Tibetan Plateau Data Center (China Meteorological Forcing Dataset, CMFD), NOAA Physical Sciences Laboratory (NOAA PSL), and NCEP/NCAR Global Reanalysis Data Archive for access to the datasets used in this analysis. The data that support the findings of this study are available from CMFD (http://data.tpdc.ac.cn), NOAA PSL (OLR, https://psl.noaa.gov/data/gridded/data.interp_OLR.html), NCEP/NCAR Global Reanalysis Data Archive (gbl reanalysis, ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis/). We would also like to express our sincere thanks to Edward A Derbyshire, who helps us improve the English expressions.

Funding

This research is funded by the National Natural Science Foundation of China (Grant Nos. 42071090, 41988101, 42271143, 42201141, 41701080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XG and LT performed data collection and analysis. The first draft of the manuscript was written by XG. LW, YW, and JZ did the material preparation. All the authors commented on the previous versions and approved the final version manuscript.

Corresponding author

Correspondence to Xiaoyu Guo.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Tian, L., Wang, L. et al. Controls of the recent precipitation anomalies in the southeastern Tibetan Plateau: from the perspective of Indian summer monsoon activities and moisture sources. Clim Dyn 62, 399–412 (2024). https://doi.org/10.1007/s00382-023-06919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06919-z

Keywords

Navigation