Skip to main content

Advertisement

Log in

The climate change response of alpine-mediterranean heavy precipitation events

Climate Dynamics Aims and scope Submit manuscript

Abstract

The present study analyses the climate change response of Alpine-Mediterranean heavy precipitation events (HPEs), often associated with hazardous flooding. We investigate HPE properties describing their propagation, scale and intensity, by applying a storm tracking algorithm in an ensemble of convection permitting regional climate models (cpRCMs) under the CMIP5-RCP85 forcing scenario. The climate change response of HPE properties we derive by comparing their mean values for periods nearfuture [2040, 2050] and farfuture [2090, 2100] against those of a present-day period historical [1996, 2005]. By the end of the 21st century the model ensemble projects the region’s surface temperatures to increase by 4.0 \(^{\circ }\)C. In this warmer climate HPEs are found to propagate farther and faster. They last longer by 5%, their area increases by 15% and their precipitation volume by 35%. Their maximum precipitation rate increases by 13% and an estimate of severity is found increased by 20%. By differentiating specific HPE categories, regions and seasons we find that landfalling and orographically forced HPEs occurring in fall are most intense, heavy and severe. Most importantly we find that these events are also projected to respond most strongly to climate warming, meaning that they will be even more intense, heavy and severe. Consequently in Mediterranean regions the most dramatic changes must be expected, in particular in Southern Italy. But also in regions north of the Alps, where HPEs are generally weaker than to the south, HPEs are found to occur twice as often in wintertime accompanied with an increase in precipitation volume of about 50%. Our analysis also confirms that even though the Mediterranean climate is generally drier by the year 2100, precipitation amounts associated with HPEs are found to increase by 52%. Further HPEs are projected to be 12% more frequent overall, although their occurrence frequency decreases in summer. Eventually we show that the characteristic HPE properties scale with surface warming, meaning that the warmer the local climate is, the more frequent, intense, heavy and severe are HPEs. Notably statistical tests show that the ten-member cpRCM ensemble provides robust climate change responses of all HPE properties investigated. The projected changes of HPE properties infer an increase of flooding risk for communities of the Alpine-Mediterranean area and thus the results presented here may encourage local authorities in adapting their flood protection measurements to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The tracker analysis output was made publicly available at https://doi.org/10.5281/zenodo.6972637. MTD is freely available at https://dtcenter.org/community-code/model-evaluation-tools-met. The observational datasets are available upon request through the institutions listed above.

References

  • Abatzoglou JT, McEvoy DJ, Redmond KT (2017) The west wide drought tracker: drought monitoring at fine spatial scales. Bull Am Meteorol Soc 98 (9):1815–1820. ISSN 0003-0007, 1520-0477. 10.1175/BAMS-D-16-0193.1. https://journals.ametsoc.org/doi/10.1175/BAMS-D-16-0193.1

  • Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, Naik V, Palmer M, Plattner GK, Rogelj J, et al (2021) Climate change 2021: The physical science basis. contribution of working group14 i to the sixth assessment report of the intergovernmental panel on climate change; technical summary. 2021

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Monthly Wea Rev 139(12):3887–3905

    Article  Google Scholar 

  • Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res Lett 42(4):1165–1172

    Article  Google Scholar 

  • Ban N, Rajczak J, Schmidli J, Schär C (2020) Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Clim Dyn 55(1):61–75

    Article  Google Scholar 

  • Ban N, Caillaud C, Coppola E, Pichelli E, Sobolowski S, Adinolfi M, Ahrens B, Alias A, Anders I, Bastin S et al (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Clim Dyn 1–28, 2021. Publisher: Springer

  • Batibeniz F, Ashfaq M, Önol B, Turuncoglu UU, Mehmood SS, Evans KJ (2020) Identification of major moisture sources across the Mediterranean Basin. Clim Dyn 54(9-10):4109–4127. ISSN 0930-7575, 1432-0894. 10.1007/s00382-020-05224-3. http://link.springer.com/10.1007/s00382-020-05224-3

  • Belušić D, de Vries H, Dobler A, Landgren O, Lind P, Lindstedt D, Pedersen RA, Sánchez-Perrino JC, Toivonen E, van Ulft B et al (2020) HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales. Geosci Model Dev 13(3):1311–1333

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner K (2006) Storm tracks and climate change. J Clim 19(15):3518–3543. ISSN 1520-0442, 0894-8755. 10.1175/JCLI3815.1. http://journals.ametsoc.org/doi/10.1175/JCLI3815.1

  • Bryan GH, Morrison H (2012) Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Monthly Wea Rev 140(1):202–225. ISSN 0027-0644, 1520-0493. 10.1175/MWR-D-11-00046.1. http://journals.ametsoc.org/doi/10.1175/MWR-D-11-00046.1

  • Buzzi A, Davolio S, Fantini M (2020) Cyclogenesis in the lee of the Alps: a review of theories. Bull Atmos Sci Technol 1(3–4):433–457. ISSN 2662-1495, 2662-1509. 10.1007/s42865-020-00021-6. https://link.springer.com/10.1007/s42865-020-00021-6

  • Caillaud C, Somot S, Alias A, Bernard-Bouissières I, Fumière Q, Laurantin O, Seity Y, Ducrocq V (2021) Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model. Clim Dyn 56(5):1717–1752

    Article  Google Scholar 

  • Chan SC, Kendon EJ, Berthou S, Fosser G, Lewis E, Fowler HJ (2020) Europe-wide precipitation projections at convection permitting scale with the unified model. Clim Dyn 55(3):409–428

  • Clark AJ, Bullock RG, Jensen TL, Xue M, Kong F (2014) Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea Forecast 29(3):517–542

    Article  Google Scholar 

  • Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, Ban N, Bastin S, Belda M, Belusic D et al (2020) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn 55(1):3–34

    Article  Google Scholar 

  • Coppola E, Nogherotto R, Ciarlo JM, Giorgi F, van Meijgaard E, Kadygrov N, Iles C, Corre L, Sandstad M, Somot M et al (2021) Assessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensemble. J Geophys Res Atmos 126 (4):e2019JD032356, 2021a. Publisher: Wiley Online Library

  • Coppola E, Raffaele F, Giorgi F, Giuliani G, Xuejie G, Ciarlo JM, Sines TR, Torres-Alavez JA, Das S, di Sante F et al (2021) Climate hazard indices projections based on cordex-core, cmip5 and cmip6 ensemble. Clim Dyn 57(5):1293–1383

    Article  Google Scholar 

  • Coppola E, Stocchi P, Pichelli E, Torres Alavez JA, Glazer R, Giuliani G, Di Sante F, Nogherotto R, Giorgi F (2021) Non-hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains. Geosci Model Dev 14(12): 7705–7723, 2021c. 10.5194/gmd-14-7705-2021. https://gmd.copernicus.org/articles/14/7705/2021/

  • Crook J, Klein C, Folwell S, Taylor CM, Parker DJ, Stratton R, Stein T (2019) Assessment of the representation of West African storm lifecycles in convection-permitting simulations. Earth Sp Sci 6(5):818–835. Publisher: Wiley Online Library

  • Davis C, Brown B, Bullock R (2006) Object-based verification of precipitation forecasts. Part I: methodology and application to mesoscale rain areas. Monthly Wea Rev 134(7):1772–1784. ISSN 1520-0493, 0027-0644. 10.1175/MWR3145.1. http://journals.ametsoc.org/doi/10.1175/MWR3145.1

  • Davis C, Brown B, Bullock R (2006) Object-based verification of precipitation forecasts. Part II: application to convective rain systems. Monthly Wea Rev 134(7):1785–1795. ISSN 1520-0493, 0027-0644. 10.1175/MWR3146.1. http://journals.ametsoc.org/doi/10.1175/MWR3146.1

  • de Vries H, Lenderink G, van der Wiel K, van Meijgaard E (2022) Quantifying the role of the large-scale circulation on European summer precipitation change. Clim Dyn. ISSN 0930-7575, 1432-0894. 10.1007/s00382-022-06250-z. https://link.springer.com/10.1007/s00382-022-06250-z

  • Delrieu G, Nicol J, Yates E, Kirstetter PE, Creutin JD, Anquetin S, Obled C, Saulnier GM, Ducrocq V, Gaume E et al (2005) The catastrophic flash-flood event of 8-9 September 2002 in the Gard Region, France: a first case study for the Cavennes-Vivarais Mediterranean Hydrometeorological Observatory. J Hydrometeorol 6(1):34–52, 2005

  • Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Baranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Boubrahmi NF, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle. Bull Am Meteorol Soc 95 (7):1063–1082, July 2014. ISSN 0003-0007, 1520-0477. 10.1175/BAMS-D-12-00242.1. http://journals.ametsoc.org/doi/10.1175/BAMS-D-12-00242.1

  • Drobinski P, Silva ND, Panthou G, Bastin S, Muller C, Ahrens B, Borga M, Conte D, Fosser G, Giorgi F, Güttler I, Kotroni V, Li L, Morin E, Önol B, Quintana-Segui P, Romera R, Torma CZ (2018) Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Clim Dyn 51(3):1237–1257. ISSN 0930-7575, 1432-0894. 10.1007/s00382-016-3083-x. http://link.springer.com/10.1007/s00382-016-3083-x

  • Fantini A (2019) Climate change impact on flood hazard over Italy. PhD Thesis, University of Trieste. http://hdl.handle.net/11368/2940009

  • Fumière Q, Daqua M, Nuissier O, Somot S, Alias A, Caillaud C, Laurantin O, Seity Y (2020) Extreme rainfall in Mediterranean France during the fall: added value of the CNRM-AROME Convection-Permitting Regional Climate Model. Clim Dyn 55(1):77–91

  • Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett. Publisher: Wiley Online Library

  • Germann U, Boscacci M, Clementi L, Gabella M, Hering A, Sartori M, Sideris IV, Calpini B (2022) Weather radar in complex orography. Remote Sens 14(3):503. ISSN 2072-4292. 10.3390/rs14030503. https://www.mdpi.com/2072-4292/14/3/503

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8). Publisher: Wiley Online Library

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Res Atmos 124(11):5696–5723

    Article  Google Scholar 

  • Giorgi F (2020) Producing actionable climate change information for regions: the distillation paradigm and the 3R framework. Eur Phys J Plus, 135(5): 435. ISSN 2190-5444. 10.1140/epjp/s13360-020-00453-1. https://link.springer.com/10.1140/epjp/s13360-020-00453-1

  • Giorgi F, Coppola E (2007) European climate-change oscillation (eco). Geophys Res Lett 34(21)

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

  • Giorgi F, Coppola E, Raffaele F (2014) A consistent picture of the hydroclimatic response to global warming from multiple indices: models and observations. J Geophys Res Atmos 119(20):11–695

    Article  Google Scholar 

  • Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci 9(8):584–589

    Article  Google Scholar 

  • Guo Z, Tang J, Tang J, Wang S, Yang Y, Luo W, Fang J (2022) Object-based evaluation of precipitation systems in convection-permitting regional climate simulation over eastern China. J Geophys Res Atmos 127(1). ISSN 2169-897X, 2169-8996. 10.1029/2021JD035645. https://onlinelibrary.wiley.com/doi/10.1029/2021JD035645

  • Hazeleger W, Wang X, Severijns C, Stefănescu C, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629. ISSN 0930-7575, 1432-0894. 10.1007/s00382-011-1228-5. http://link.springer.com/10.1007/s00382-011-1228-5

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699

    Article  Google Scholar 

  • Holland L, Gotway JH, Brown B, Bullock R (2007) A toolkit for model evaluation. National Center for Atmospheric Research Boulder, CO, 80307

  • Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data: CLIMATE OF DAILY PRECIPITATION IN THE ALPS. International Journal of Climatology, 34 (5):1657–1675. ISSN 08998418. 10.1002/joc.3794. https://onlinelibrary.wiley.com/doi/10.1002/joc.3794

  • Jacob D, Kotova L, Teichmann C, Sobolowski SP, Vautard R, Donnelly C, Koutroulis AG, Grillakis MG, Tsanis IK, Damm A, et al (2018) Climate impacts in europe under+ 1.5 c global warming. Earth’s Fut 6(2):264–285

  • Johnson A, Wang X, Kong F, Xue M (2013) Object-Based Evaluation of the Impact of Horizontal Grid Spacing on Convection-Allowing Forecasts. Monthly Wea Rev 141(10): 3413–3425. ISSN 0027-0644, 1520-0493. 10.1175/MWR-D-13-00027.1. http://journals.ametsoc.org/doi/10.1175/MWR-D-13-00027.1

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4(7):570–576. ISSN 1758-678X, 1758-6798. 10.1038/nclimate2258. http://www.nature.com/articles/nclimate2258

  • Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98(1):79–93

    Article  Google Scholar 

  • Keuler K, Radtke K, Kotlarski S, Lathi D (2016) Regional climate change over Europe in COSMO-CLM: Influence of emission scenario and driving global model. Meteorol Zeitschrift 25(2):121–136

    Article  Google Scholar 

  • Khodayar S, Fosser G, Berthou S, Davolio S, Drobinski P, Ducrocq V, Ferretti R, Nuret M, Pichelli E, Richard E et al (2016) A seamless weather-climate multi-model intercomparison on the representation of a high impact weather event in the western mediterranean: Hymex iop12. Quart J R Meteorol Soc 142:433–452

    Article  Google Scholar 

  • Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change, 3(4):369–373. ISSN 1758-678X, 1758-6798. 10.1038/nclimate1716. http://www.nature.com/articles/nclimate1716

  • Kodama C, Stevens B, Mauritsen T, Seiki T, Satoh M (2019) A new perspective for future precipitation change from intense extratropical cyclones. Geophys Res Lett 46(21): 12435–12444. ISSN 0094-8276, 1944-8007. 10.1029/2019GL084001. https://onlinelibrary.wiley.com/doi/10.1029/2019GL084001

  • Kovats R, Valentini R, Bouwer L, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana J (2014) Climate change 2014: Impacts, adaptation, and vulnerability. part b: Regional aspects. contribution of working group ii to the 5th assessment report of the ipcc

  • Lenderink G, Barbero R, Loriaux JM, Fowler HJ (2017) Super-clausius-clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J Clim 30(15):6037–6052. ISSN 0894-8755, 1520-0442. 10.1175/JCLI-D-16-0808.1. https://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0808.1

  • Lenderink G, de Vries H, Fowler HJ, Barbero R, van Ulft B, van Meijgaard E (2021) Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. Philos Trans R Soc A Math Phys Eng Sci 379 (2195):20190544. ISSN 1364-503X, 1471-2962. 10.1098/rsta.2019.0544. https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0544

  • Leutwyler D, Lathi D, Ban N, Fuhrer O, Schär C (2017) Evaluation of the convection-resolving climate modeling approach on continental scales. J Geophys Res Atmos 122(10):5237–5258

    Article  Google Scholar 

  • Lucas-Picher P, Argeso A, Brisson E, Tramblay Y, Berg P, Lemonsu A, Kotlarski S, Caillaud C (2021) Convection-permitting modeling with regional climate models: Latest developments and next steps. WIREs Clim Change 12(6). ISSN 1757-7780, 1757-7799. 10.1002/wcc.731. https://onlinelibrary.wiley.com/doi/10.1002/wcc.731

  • Lundquist J, Hughes M, Gutmann E, Kapnick S (2019) Our Skill in Modeling Mountain Rain and Snow is Bypassing the Skill of Our Observational Networks. Bull Am Meteorol Soc 100 (12):2473–2490. ISSN 0003-0007, 1520-0477. 10.1175/BAMS-D-19-0001.1. https://journals.ametsoc.org/view/journals/bams/100/12/bams-d-19-0001.1.xml

  • Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M, Climate change, et al (2021) the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, page 2:2021

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change, 109(1-2):213–241. ISSN 0165-0009, 1573-1480. 10.1007/s10584-011-0156-z. http://link.springer.com/10.1007/s10584-011-0156-z

  • Miglietta MM, Manzato A, Rotunno R (2016) Characteristics and predictability of a supercell during HyMeX SOP1. Quart J R Meteorol Soc 142(700):2839–2853. ISSN 0035-9009, 1477-870X. 10.1002/qj.2872. https://onlinelibrary.wiley.com/doi/10.1002/qj.2872

  • Moseley C, Berg P, Haerter JO (2013) Probing the precipitation life cycle by iterative rain cell tracking. J Geophys Res Atmos 118(24):13–361

    Article  Google Scholar 

  • Müller SK, Caillaud C, Chan S, de Vries H, Bastin S, Berthou S, Brisson E, Demory M-E, Feldmann H, Goergen K, Kartsios S, Lind P, Keuler K, Pichelli E, Raffa M, Tölle MH, Warrach-Sagi K (2022) Correction to: Evaluation of alpine-mediterranean precipitation events in convection-permitting regional climate models using a set of tracking algorithms. Clim Dyn. https://doi.org/10.1007/s00382-022-06608-3

    Article  Google Scholar 

  • Nabat P, Somot S, Cassou C, Mallet M, Michou M, Bouniol D, Decharme B (2020) Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmos Chem Phys 20(14):8315–8349

    Article  Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J, Gulev S, Hanley J, Hewson J, Inatsu M, Keay K, Kew SK, Kindem I, Leckebusch GC, Liberato MLR, Lionello P, Mokhov II, Pinto JG, Raible CC, Reale M, Rudeva I, Schuster M, Simmonds I, Sinclair M, Sprenger M, Tilinina ND, Trigo IF, Ulbrich S, Ulbrich U, Wang XL, Wernli H (2013) IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94 (4):529–547. ISSN 1520-0477. 10.1175/BAMS-D-11-00154.1. https://journals.ametsoc.org/doi/10.1175/BAMS-D-11-00154.1

  • O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106 (35):14773–14777. Publisher: National Acad Sciences

  • O’Gorman PA (2015) Precipitation extremes under climate change. Curr Clim Change Rep 1(2):49–59

    Article  Google Scholar 

  • Panziera L, James CN, Germann U (2015) Mesoscale organization and structure of orographic precipitation producing flash floods in the Lago Maggiore region: Orographic Convection in the Lago Maggiore Area. Quart J R Meteorol Soc 141(686):224–248. ISSN 00359009. 10.1002/qj.2351. https://onlinelibrary.wiley.com/doi/10.1002/qj.2351

  • Papalexiou SM, Montanari A (2019) Global and regional increase of precipitation extremes under global warming. Water Resour Res 55(6):4901–4914

    Article  Google Scholar 

  • Pichelli E, Rotunno R, Ferretti R (2017) Effects of the Alps and Apennines on forecasts for Po Valley convection in two HyMeX cases: Effects of Alps and Apennines on Po Valley Convection Forecasts. Quart J R Meteorol Soc 143(707):2420–2435. ISSN 00359009. 10.1002/qj.3096. https://onlinelibrary.wiley.com/doi/10.1002/qj.3096

  • Pichelli E, Coppola E, Sobolowski S, Ban N, Giorgi F, Stocchi P, Alias A, Belušić D, Berthou S, Caillaud C, Cardoso RM, Chan S, Christensen OB, Dobler A, de Vries H, Goergen K, Kendon EJ, Keuler K, Lenderink G, Lorenz T, Mishra AN, Panitz HJ, Schär C, Soares PMM, Truhetz H, Vergara-Temprado J (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Clim Dyn 56(11–12):3581–3602. ISSN 0930-7575, 1432-0894. 10.1007/s00382-021-05657-4. https://link.springer.com/10.1007/s00382-021-05657-4

  • Poujol B, Sobolowski S, Mooney P, Berthou S (2020) A physically based precipitation separation algorithm for convection-permitting models over complex topography. Quart J R Meteorol Soc 146(727):748–761. ISSN 0035-9009, 1477-870X. 10.1002/qj.3706. https://onlinelibrary.wiley.com/doi/10.1002/qj.3706

  • Prein AF, Gobiet A (2017) Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int J Climatol 37 (1):305–327. Publisher: Wiley Online Library

  • Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Clim Dyn 41(9-10):2655–2677. ISSN 0930-7575, 1432-0894. 10.1007/s00382-013-1744-6. http://link.springer.com/10.1007/s00382-013-1744-6

  • Prein AF, Liu C, Ikeda K, Bullock R, Rasmussen RM, Holland GJ, Clark M (2017) Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim Dyn 1–16. Publisher: Springer

  • Prein AF, Liu C, Ikeda K, Trier SB, Rasmussen RM, Holland GJ, Clark MP (2017) Increased rainfall volume from future convective storms in the US. Nat Clim Change 7(12):880–884. Publisher: Nature Publishing Group

  • Prein AF, Rasmussen R, Wang D, Giangrande S (2021) Sensitivity of organized convective storms to model grid spacing in current and future climates. Philos Trans R Soc A 379(2195):20190546. Publisher: The Royal Society Publishing

  • Purr C, Brisson E, Ahrens B (2018) Convective Shower Characteristics Simulated with the Convection-Permitting Climate Model COSMO-CLM. Atmosphere 10(12):810. ISSN 2073-4433. 10.3390/atmos10120810. https://www.mdpi.com/2073-4433/10/12/810

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17(4): 347–348. Publisher: Berlin: Borntraeger, c1992-

  • Roe GH (2005) Orographic precipitation. Ann Rev Earth Planet Sci 33 (1):645–671. ISSN 0084-6597, 1545-4495. 10.1146/annurev.earth.33.092203.122541. https://www.annualreviews.org/doi/10.1146/annurev.earth.33.092203.122541

  • Rotunno R, Houze RA (2007) Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart J R Meteorol Soc 133(625):811–830. ISSN 00359009, 1477870X. 10.1002/qj.67. https://onlinelibrary.wiley.com/doi/10.1002/qj.67

  • Schneider T, O’Gorman PA, Levine XJ (2010) WATER VAPOR AND THE DYNAMICS OF CLIMATE CHANGES. Rev Geophys 48(3):RG3001. ISSN 8755-1209. 10.1029/2009RG000302. http://doi.wiley.com/10.1029/2009RG000302

  • Skamarock WC, Park SH, Klemp JB, Snyder C (2014) Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J Atmos Sci 71(11):4369–4381. ISSN 0022-4928, 1520-0469. 10.1175/JAS-D-14-0114.1. https://journals.ametsoc.org/doi/10.1175/JAS-D-14-0114.1

  • Sodemann H, Zubler E (2009) Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int J Climatol. ISSN 08998418, 10970088. 10.1002/joc.1932. https://onlinelibrary.wiley.com/doi/10.1002/joc.1932

  • Stevens B (2005) ATMOSPHERIC MOIST CONVECTION. Ann Rev Earth Planet Sci 33 (1):605–643. ISSN 0084-6597, 1545-4495. 10.1146/annurev.earth.33.092203.122658. https://www.annualreviews.org/doi/10.1146/annurev.earth.33.092203.122658

  • Tabary P, Dupuy P, LHenaff G, Gueguen C, Moulin L, Laurantin O, Merlier C, Soubeyroux JM (2012) A 10-year (1997–2006) reanalysis of quantitative precipitation estimation over France:methodology and first results. IAHS Publ 351:255-260

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93 (4):485–498. ISSN 1520-0477. 10.1175/BAMS-D-11-00094.1. https://journals.ametsoc.org/doi/10.1175/BAMS-D-11-00094.1

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1–2):123–138

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84 (9):1205–1218. ISSN 0003-0007, 1520-0477. 10.1175/BAMS-84-9-1205. https://journals.ametsoc.org/doi/10.1175/BAMS-84-9-1205

  • van Meijgaard E, Van Ulft L, Van de Berg W, Bosveld F, Van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. KNMI De Bilt, The Netherlands

  • Van Meijgaard E, Van Ulft L, Lenderink G, De Roode S, Wipfler EL, Boers R, van Timmermans R (2012) Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe. Number KVR 054/12. KVR, 2012

  • Wernli H, Paulat M, Hagen M, Frei C (2008) SAL-a novel quality measure for the verification of quantitative precipitation forecasts. Monthly Wea Rev 136(11): 4470–4487. ISSN 1520-0493, 0027-0644. 10.1175/2008MWR2415.1. http://journals.ametsoc.org/doi/10.1175/2008MWR2415.1

  • Winterrath T, Brendel C, Hafer M, Junghänel T, Klameth A, Lengfeld K, Walawender E, Weigl E, Becker A (2018) RADKLIM Version 2017.002: Reprocessed gauge-adjusted radar data, one-hour precipitation sums (RW). Deutscher Wetterdienst (DWD)

  • Waest M, Frei C, Altenhoff A, Hagen M, Litschi M, Schär C (2010) A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int J Climatol 30(12):1764–1775

  • Zängl G (2007) Small-scale variability of orographic precipitation in the Alps: Case studies and semi-idealized numerical simulations: SMALL-SCALE PRECIPITATION VARIABILITY. Quart J R Meteorol Soc 133(628):1701–1716. ISSN 00359009. 10.1002/qj.163. https://onlinelibrary.wiley.com/doi/10.1002/qj.163

Download references

Acknowledgements

The authors gratefully acknowledge the WCRP-CORDEX-FPS on Convective phenomena at high resolution over Europe and the Mediterranean [FPSCONV-ALP-3] and the research data exchange infrastructure and services provided by the Jülich Supercomputing Centre, Germany, as part of the Helmholtz Data Federation initiative. This work has also been supported in part by the Horizon 2020 EUCP (European Climate Prediction System, https://www.eucp-project.eu) project. This EUCP project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 776613. The authors thank Meteo-France for providing the COMEPHORE dataset, MeteoSwiss for the RdisaggH dataset and DWD for providing the RADKLIM dataset (RADKLIM Version 2017.002: Reprocessed gauge-adjusted radar data, one-hour precipitation sums (RW) DOI: 10.5676/DWD/RADKLIM_RW_V2017.002). The authors acknowledge the CETEMPS, University of L’Aquila, for allowing ICTP to access the Italian database of precipitation which GRIPHO is based on. MED acknowledges the Partnership for advanced computing in Europe (PRACE) for awarding access to Piz Daint at ETH Zürich at the Swiss National Supercomputing Centre (CSCS, Switzerland). MED also acknowledges the Federal Office for Meteorology and Climatology (MeteoSwiss), CSCS, the Center for Climate Systems Modeling (C2SM) and ETH Zürich for their contributions to the development and maintenance of the GPU-accelerated version of COSMO.

Author information

Authors and Affiliations

Authors

Contributions

SKM developed and conducted the analysis, produced figures and wrote the manuscript. EC and EP supported the study in its conceptualization, methodology development, validation discussion and writing. EP, EC, SB, AD, BS, MT and HdV reviewed the manuscript. All authors, except of SKM and EC, are recognized for providing model output.

Corresponding author

Correspondence to Sebastian K. Müller.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

Does not apply.

Consent for publication

Does not apply.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4522 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, S.K., Pichelli, E., Coppola, E. et al. The climate change response of alpine-mediterranean heavy precipitation events. Clim Dyn 62, 165–186 (2024). https://doi.org/10.1007/s00382-023-06901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06901-9

Keywords

Navigation