Skip to main content

Advertisement

Log in

Stability of ENSO teleconnections during the last millennium in CESM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The El Niño-Southern Oscillation (ENSO) has a significant impact on the global climate through atmospheric teleconnections. It is important to understand the stability of ENSO teleconnections, not only for future weather forecasting and climate projection, but also for ENSO reconstructions based on paleo-proxies. In this study, we investigate the decadal variations of ENSO teleconnections in global land surface temperature (LST) from 850 to 2005AD using 13 ensemble members of the Community Earth System Model-Last Millennium Ensemble (CESM-LME). The CESM can simulate the main Eurasian cooling and Arctic warming, known as the warm Arctic-cold Eurasia (WACE) pattern, during the boreal winter of an El Niño. Furthermore, it can also capture the western Antarctic warming during the developing and decaying summers of an El Niño. There is a dominant decadal variation in the ENSO-LST teleconnections, expressed as anomalous LST patterns that closely resemble those seen in the WACE pattern during boreal winter and the western Antarctic warming pattern during summer. This decadal variation of ENSO-LST teleconnections is primarily due to the varying positions of Rossby wave sources associated with distinct ENSO patterns, which are located either to the west or to the east of Hawaii. The LST response to ENSO over South Siberia, as well as the associated precipitation response over North Eurasia, even show opposite patterns at different phases of the decadal variation. The decadal variation in CESM is found to be related to the interdecadal Pacific oscillation (IPO) and is likely attributed to internal variability rather than external forcing. Our findings suggest that the decadal variation in ENSO teleconnections should be considered when using proxies from Eurasian regions to reconstruct ENSO variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

CESM1 Last Millennium Ensemble (LME) database was downloaded from https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLME.html. For details regarding the LME, see https://www.cesm.ucar.edu/projects/community-projects/LME/.

References

  • Abram N, Mcgregor H, Tierney J, Evans M, Mckay N, Kaufman D et al (2016) Early onset of industrial-era warming across the oceans and continents. Nature 536:411–418

    Google Scholar 

  • Adams JB, Mann M, Ammann C (2003) Proxy evidence for an ElNino-like response to volcanic forcing. Nature 426:274–278

    Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231. https://doi.org/10.1175/1520-0442(2002)015,2205:TABTIO.2.0.CO;2

    Article  Google Scholar 

  • Allen MR, Smith LA (1997) Optimal filtering in singular spectrum analysis. Phys Lett 234:419–428

    Google Scholar 

  • Andréa ST, Caroline CU, Malte FS, Dietmar D, Karumuri A, Regina RR, Yeh S-W (2021) ENSO atmospheric teleconnections. El Niño Southern Oscillation in a changing climate. Geophys Monogr 253:311–335

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Nio Modoki and its possible teleconnection. J Geophys Res-Oceans 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Ault TR, Cole JE, Overpeck JT, Pederson GT, St. George S, Otto Bliesner B, Woodhouse CA, Deser C (2013a) The continuum of hydroclimate variability in western North America during the last millennium. J Clim 26:5863–5878

    Google Scholar 

  • Ault TR, Deser C, Newman M, Emile-Geay J (2013b) Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys Res Lett 40:3450–3456. https://doi.org/10.1002/grl.50647

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7):1999–2018. https://doi.org/10.1007/s00382-013-1783-z

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Google Scholar 

  • Bladé I, Newman M, Alexander MA, Scott JD (2008) The late fall extratropical response to ENSO: sensitivity to coupling and convection in the tropical West Pacific. J Clim 21:6101–6118

    Google Scholar 

  • Capotondi A, Deser C, Phillips AS, Okumura Y, Larson SM (2020) ENSO and Pacific decadal variability in the Community Earth System Model Version 2. J Adv Model Earth Syst 12(12):e2019MS002022. https://doi.org/10.1029/2019MS002022

    Article  Google Scholar 

  • Carr M, Sachs JP, Schauer AJ, Rodrguez WE, Ramos FC (2013) Reconstructing El Nio-Southern oscillation activity and ocean temperature seasonality from short-lived marine mollusk shells from peru. Palaeogeogr Palaeoclimatol Palaeoecol 371:45–53

    Google Scholar 

  • Chai J, Liu F, Xing C, Wang B, Gao C-C, Liu J, Chen D-L (2020) A robust equatorial Pacific westerly response to tropical volcanism in multiple models. Clim Dyn 55:3413–3429. https://doi.org/10.1007/s00382-020-05453-6

    Article  Google Scholar 

  • Chang P, Saravanan R, Ji L, Hegerl GC (2000) The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J Clim 13:2195–2216

    Google Scholar 

  • Chen W, Dong B, Lu R (2010) Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. J Geophys Res 115:D17109. https://doi.org/10.1029/2009JD013596

    Article  Google Scholar 

  • Chowdary JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng X-T (2012) Interdecadal variations in ENSO teleconnection to the indo–western Pacific for 1870–2007. J Clim 25:1722–1744. https://doi.org/10.1175/JCLI-D-11-00070.1

    Article  Google Scholar 

  • Chowdary JS, Parekh A, Gnanaseelan C, Sreenivas P (2014) Interdecadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: special emphasis on decay phase of El Niño. Glob Planet Change 112:33–40. https://doi.org/10.1016/j.gloplacha.2013.11.003

    Article  Google Scholar 

  • Christie DA, Lara A, Barichivich J, Villalba R, Morales MS, Cuq E (2009) El Nio-Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the altiplano, central andes. Palaeogeogr Palaeoclimatol Palaeoecol 281:309–319

    Google Scholar 

  • Christopher H O’Reilly (2018) Interdecadal variability of the ENSO teleconnection to the wintertime North Pacific. Clim Dyn 51:3333–3350

    Google Scholar 

  • Coats S, Smerdon JE, Cook BI (2013) Stationarity of the tropical pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophys Res Lett 40:4927–4932. https://doi.org/10.1002/grl.50938

    Article  Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007. https://doi.org/10.1088/1748-9326/7/1/014007

    Article  Google Scholar 

  • Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397

    Google Scholar 

  • Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143

    Google Scholar 

  • Diaz H, Hoerling M, Eischieid J (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862

    Google Scholar 

  • Domeisen DIV, Garfinkel CI, Butler AH (2019) The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev Geophys 57(1):5–47

    Google Scholar 

  • Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J Clim 22:2023–2038. https://doi.org/10.1175/2008JCLI2590.1

    Article  Google Scholar 

  • Du Y, Cai W, Wu Y (2013) A new type of the Indian Ocean Dipole since the mid-1970s. J Clim 26(3):959–972

    Google Scholar 

  • Emile-Geay J, Seager R, Cane MA, Cook ER, Haug GH (2008) Volcanoes and ENSO over the past millennium. J Clim 21:3134–3148. https://doi.org/10.1175/2007JCLI1884.1

    Article  Google Scholar 

  • Feng X-F, Ding Q-H, Wu L-G, Jones C et al (2021) A multidecadal-scale tropically driven global teleconnection over the past millennium and its recent strengthening. J Clim 34:1–51. https://doi.org/10.1175/JCLI-D-20-0216.1

    Article  Google Scholar 

  • Gallant AJE, Phipps SJ, Karoly DJ, Mullan AB, Lorrey AM (2013) Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions. J Clim 26:8827–8849. https://doi.org/10.1175/JCLI-D-12-00338.1

    Article  Google Scholar 

  • Geng X, Zhang W, Stuecker MF, Liu P, Jin F-F, Tan G (2017) Decadal modulation of the ENSO–East asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Clim Dyn 49:2531–2544. https://doi.org/10.1007/s00382-016-3465-0

    Article  Google Scholar 

  • Geng X, Zhang W, Jin F-F, Stuecker MF (2018) A new method for interpreting nonstationary running correlations and its application to the ENSO–EAWM relationship. Geophys Res Lett 45:327–334. https://doi.org/10.1002/2017GL076564

    Article  Google Scholar 

  • Geng X, Zhang W, Jin F-F, Stuecker MF, Levine AFZ (2020) Modulation of the relationship between ENSO and its combination mode by the Atlantic Multidecadal Oscillation. J Clim 33:4679–4695. https://doi.org/10.1175/JCLI-D-19-0740.1

    Article  Google Scholar 

  • Gergis J, Braganza K, Fowler A, Mooney S, Risbey J (2006) Reconstructing El Niño–Southern Oscillation (ENSO) from high-resolution palaeoarchives. J Quat Sci 21:707–722

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulations. Q J R Meteorol Soc 106:447–462

    Google Scholar 

  • Greatbatch RJ, Lu J, Peterson KA (2004) Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys Res Lett 31:L02208. https://doi.org/10.1029/2003GL018542

    Article  Google Scholar 

  • Guilyardi E et al (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340

    Google Scholar 

  • Ham YG, Choi JY, Kug JS (2017) The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Clim Dyn 49:249–261

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. https://doi.org/10.1029/2010RG000345

    Article  Google Scholar 

  • Harzallah A, Sadourny R (1995) Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J Clim 8:474–495

    Google Scholar 

  • He S, Wang H (2013) Oscillating relationship between the east asian winter monsoon and ENSO. J Clim 26:9819–9838. https://doi.org/10.1175/JCLI-D-13-00174.1

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Google Scholar 

  • Hope P, Henley BJ, Gergis J, Brown J, Ye H (2017) Timevarying spectral characteristics of ENSO over the last millennium. Clim Dyn 49:1705–1727

    Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1661. https://doi.org/10.1175/1520-0469(1993)050,1661:RWPOAR.2.0.CO;2

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical. Atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Google Scholar 

  • Jia Z, Bollasina MA, Li C, Doherty R, Wild O (2020) Changes in the relationship between ENSO and the east asian winter monsoon under global warming. Environ Res Lett 15:124056

    Google Scholar 

  • Jiménez-Esteve B, Domeisen DIV (2018) The tropospheric pathway of the ENSO–North Atlantic teleconnection. J Clim 31:4563–4584

    Google Scholar 

  • Karoly DJ (1983) Rossby wave propagation in a barotropic atmosphere. Dyn Atmos Oceans 7:111–125. https://doi.org/10.1016/0377-0265(83)90013-1

    Article  Google Scholar 

  • Kim JW, An SI (2019) Western North Pacific anticyclone change associated with the El Niño–Indian Ocean dipole coupling. Int J Climatol 39(5):2505–2521

    Google Scholar 

  • King MP, Yu E-T, Sillmann J (2020) Impact of strong and extreme El Niños on European hydroclimate. Tellus A 72:1–10. https://doi.org/10.1080/16000870.2019.1704342

    Article  Google Scholar 

  • Klein S, Soden B, Lau N (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Google Scholar 

  • Knippertz P, Ulbrich U, Marques F, Corte-Real J (2003) Decadal changes in the link between El Niño and springtime North Atlantic Oscillation and european–north african rainfall. Int J Climatol 23:1293–1311. https://doi.org/10.1002/joc.944

    Article  Google Scholar 

  • Knudsen MF, Jacobsen BH, Seidenkrantz M-S, Olsen J (2014) Evidence for external forcing of the Atlantic multi-decadal oscillation since termination of the little ice age. Nat Commun 5:3323. https://doi.org/10.1038/ncomms4323

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the indian Monsoon and ENSO. Science 284:2156–2159

    Google Scholar 

  • Lau N-C, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J Clim 7:1184–1207

    Google Scholar 

  • Lewis SC, LeGrande AN (2015) Stability of ENSO and its tropical Pacifc teleconnections over the last millennium. Clim Past 11:1347–1360

    Google Scholar 

  • Li Y, Li J (2012) Propagation of planetary waves in the horizonal non-uniform basic flow (in Chinese). Chin J Geophys 55:361–371

    Google Scholar 

  • Li X, M Ting (2015) Recent and future changes in the asian monsoon–ENSO relationship: natural or forced? Geophys Res Lett 42. doi: 10.1002/2015GL063557.

    Article  Google Scholar 

  • Li J-B, Xie S-P, Cook E, Huang G, D’Arrigo R, Liu F, Ma J, Zheng X-T (2011) Interdecadal modulation of ENSO amplitude during the last millennium. Nat Clim Change 1:114–118. https://doi.org/10.1038/NCLIMATE1086

    Article  Google Scholar 

  • Li Y, Li J, Jin F-F, Zhao S (2015) Interhemispheric propagation of the stationary Rossby waves in a horizontally non-uniform basic flow. J Atmos Sci. https://doi.org/10.1175/JAS-D-14-0239.1

    Article  Google Scholar 

  • Li X-C, Cai W-J, Meehl Gerald A, Chen Dake, Yuan X-J et al (2021) Tropical teleconnection impacts on Antarctic climate changes. Nat Rev Earth Environ. https://doi.org/10.1038/s43017-021-00204-5

    Article  Google Scholar 

  • Liu F, Wang B (2013) Mechanisms of global teleconnections associated with the asian summer monsoon: an intermediate model analysis. J Clim 26:1791–1806. https://doi.org/10.1175/JCLI-D-12-00243.1.(IF=5.1

    Article  Google Scholar 

  • Liu F, Li J, Wang B, Liu J, Li T, Huang G, Wang Z (2018) Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Clim Dyn 50(9):3799–3812. https://doi.org/10.1007/s00382-017-3846-z

    Article  Google Scholar 

  • Liu F-Y, Zhang W-J, Jin F-F, Hu S-Q (2021) Decadal modulation of the ENSO–Indian Ocean Basin warming relationship during the decaying summer by the Interdecadal Pacifific Oscillation. J Clim 34:2685–2699. https://doi.org/10.1175/JCLI-D-20-0457.1

    Article  Google Scholar 

  • Liu F, Gao C-C, Chai J, Alan Robock, Wang B, Li J-B, Zhang X, Huang G, Dong W-J (2022) Tropical volcanism enhanced the east asian summer Monsoon during the last millennium. Nat Commun 13:3429. https://doi.org/10.1038/s41467-022-31108-7. (IF = 17.7)

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. https://doi.org/10.1029/2011GL050049

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B, Mohino E, Losada T (2016) Multidecadal modulation of ENSO teleconnection with Europe in late winter: analysis of CMIP5 models. J Clim 29:8067–8081. https://doi.org/10.1175/JCLI-D-15-0596.1

    Article  Google Scholar 

  • Maher N, Sen Gupta A, England MH (2014) Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys Res Lett 41:5978–5986

    Google Scholar 

  • Mcphaden M, Zebiak S, Glantz M (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745

    Google Scholar 

  • Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J Clim 20:2872–2880

    Google Scholar 

  • Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–902

    Google Scholar 

  • Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent eurasian cold winters in past decades. Nat Geosci 7:869–873. https://doi.org/10.1038/ngeo2277

    Article  Google Scholar 

  • Murphy EJ, Clarke A, Abram NJ, Turner J (2014) Variability of sea-ice in the northern Weddell Sea during the 20th century. J Geophys Res‐Oceans 119:4549–4572

    Google Scholar 

  • Otto-Bliesner B, Brady E, Fasullo J, Jahn A, Landrum L et al (2016) Climate variability and change since 850 C.E.: an ensemble approach with the Community Earth System Model (CESM). Bull Am Meteorol Soc 97:735–754. https://doi.org/10.1175/BAMS-D-14-00233.1

    Article  Google Scholar 

  • Overland J, Francis JA, Hall R, Hanna E, Kim S, Vihma T (2015) The melting Arctic and midlatitude weather patterns: are they connected? J Clim 28:7917–7932. https://doi.org/10.1175/JCLI-D-14-00822.1

    Article  Google Scholar 

  • Park J-H, Li T (2019) Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation. Clim Dyn 52:5345–5360. https://doi.org/10.1007/s00382-018-4452-4

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res (Atmospheres) 108:D14. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Rodrigues RR, Campos EJD, Haarsma R (2015) The impact of ENSO on the South Atlantic subtropical dipole mode. J Clim 28:2691–2705

    Google Scholar 

  • Rodríguez-Fonseca B, Suárez-Moreno R, Ayarzagüena B, López-Parages J, Iñigo G, Villamayor Julián, Mohino Elsa, Losada Teresa, Castaño-Tierno A (2016) A review of ENSO influence on the North Atlantic: a non-stationary signal. Atmosphere. https://doi.org/10.3390/atmos7070087

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Google Scholar 

  • Rossby CG (1945) On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J Meteorol 2:187–204. https://doi.org/10.1175/1520-0469(1945)002,0187:OTPOFA.2.0.CO;2

    Article  Google Scholar 

  • Shi J, Yan Q, Wang H-J (2018) Timescale dependence of the relationship between the east asian summer monsoon strength and precipitation over eastern China in the last millennium. Clim Past 14(4):577–591

    Google Scholar 

  • Si D, Hu A (2017) Internally generated and externally forced multidecadal oceanic modes and their influence on the summer rainfall over East Asia. J Clim 30:8299–8316

    Google Scholar 

  • Stevenson S, Bette O-B, Fasullo J, Brady E (2016) El Niño like hydroclimate responses to last millennium volcanic eruptions. J Clim 29:2907–2921. https://doi.org/10.1175/JCLI-D-15-0239.1

    Article  Google Scholar 

  • Stevenson S, Fasullo JT, Otto-Bliesner BL, Tomas RA, Gao C (2017) Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc Natl Acad Sci 114(8):1822–1826. https://doi.org/10.1073/pnas.1612505114

    Article  Google Scholar 

  • Stevenson S, Capotondi A, Fasullo J, Otto-Bliesner B (2019) Forced changes to twentieth century enso diversity in a last millennium context. Clim Dyn 52:7359–7374

    Google Scholar 

  • Stuecker MF, Timmermann A, Jin F-F, Chikamoto Y, Zhang W, Wittenberg AT et al (2017) Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys Res Lett 50:2305–2492

    Google Scholar 

  • Sun L, Perlwitz J, Hoerling M (2016) What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys Res Lett 43:5345–5352. https://doi.org/10.1002/2016GL069024

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313. https://doi.org/10.1175/1520-0442(2003)016,3296:IOTOON.2.0.CO;2

    Article  Google Scholar 

  • Tao W, Huang G, Hu K, Qu X, Wen G, Gong H (2015) Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their relationship under global warming in CMIP5 models. Int J Climatol 3:391–407. https://doi.org/10.1002/joc.3987

    Article  Google Scholar 

  • Tejavath CT, Ashok K, Chakraborty S, Ramesh R (2019) A PMIP3 narrative of modulation of ENSO teleconnections to the indian summer monsoon by background changes in the last millennium. Clim Dyn 53:3445–3461

    Google Scholar 

  • Timmreck C (2012) Modeling the climatic effects of large explosive volcanic eruptions. WIREs Clim Change 3:545–564. https://doi.org/10.1002/wcc.192

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22(6):1469–1481

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Google Scholar 

  • Wang B, An S-I (2005) A method for detecting season-dependent modes of climate variability: s-eof analysis. Geophys Res Lett 32:L15710

    Google Scholar 

  • Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of asian–australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789. https://doi.org/10.1175/2007JCLI1981.1

    Article  Google Scholar 

  • Wang L, Yu JY, Paek H (2017) Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat Commun 8(1):14887

    Google Scholar 

  • Watanabe T, Yamazaki K (2014) Decadal-scale variation of south asian summer monsoon onset and its relationship with the Pacific decadal oscillation. J Clim 27:5163–5173. https://doi.org/10.1175/JCLI-D-13-00541.1

    Article  Google Scholar 

  • Xie S-P, Du Y, Huang G, Zheng X-T, Tokinaga H, Hu K, Liu Q (2010) Decadal shift in El Niño influences on indo-western Pacific and East Asian climate in the 1970s. J Clim 23:3352–3368. https://doi.org/10.1175/2010JCLI3429.1

    Article  Google Scholar 

  • Xie S-P, Yu K, Yan DU, Kaiming HU, Chowdary JS, Huang G (2016) Indo-western Pacifific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. https://doi.org/10.1007/s00376-015-5192-6

    Article  Google Scholar 

  • Yang L, Gao Y, Gao C, Liu F (2022) Climate responses to Tambora-Size volcanic eruption and the impact of warming climate. Geophys Res Lett 49(10):e2021GL097477. https://doi.org/10.1029/2021GL097477

    Article  Google Scholar 

  • Yeh T (1949) On energy dispersion in the atmosphere. J Meteor 6:1–16. https://doi.org/10.1175/1520-0469(1949)006,0001:OEDITA.2.0.CO;2

    Article  Google Scholar 

  • Yu E, King MP, Sobolowski S, Otterå OH, Gao YQ (2018) Asian droughts in the last millennium: a search for robust impacts of Pacific Ocean surface temperature variabilities. Clim Dyn 50:4671–4689. https://doi.org/10.1007/s00382-017-3897-1

    Article  Google Scholar 

  • Zanchettin D, Bothe O, Graf HF, Lorenz SJ, Luterbacher J, Timmreck C, Jungclaus JH (2013) Background conditions influence the decadal climate response to strong volcanic eruptions. J Geophys Res-Atmos 118:4090–4106. https://doi.org/10.1002/jgrd.50229

    Article  Google Scholar 

  • Zhang W, Wang Y, Jin F-F, Stuecker MF, Turner AG (2015) Impact of different El Niño types on the El Niño/IOD relationship. Geophys Res Lett 42:8570–8576

    Google Scholar 

  • Zhao S, Li J, Li Y (2015) Dynamics of an interhemispheric teleconnection across the. Critical latitude through a southerly duct during boreal winter. J Clim. https://doi.org/10.1175/JCLI-D-14-00425.1

    Article  Google Scholar 

  • Zhou W, Wang X, Zhou J, Li C, Chan JCL (2007) Interdecadal variability of the relationship between the east asian winter monsoon and ENSO. Meteorol Atmos Phys 98(3–4):283–293

    Google Scholar 

Download references

Funding

This work was jointly supported by the Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004), and the National Natural Science Foundation of China (42175061; 41975107; 42175080; 42176017).

Author information

Authors and Affiliations

Authors

Contributions

XH, YJL, and FL were responsible for design of the research. Material preparation, data collection, and analysis were performed by XH, YJL and FL. JL, XZ, LF and YL helped interpret the results. XH wrote the first draft of the manuscript. All authors provided comments on different versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

382_2023_6878_MOESM1_ESM.jpeg

Supplementary material 1Figure S1. Simulated ENSO in CESM-LME. Evolution of monthly NINO3.4 index in 13 CESM-LME (grey lines), as well as their ensemble mean (dark line), and observed one in HadISST (red line) for (a) El Niño events and (b) La Niña events, respectively (JPEG 958.6 kb)

382_2023_6878_MOESM2_ESM.jpeg

Supplementary material 2Figure S2. ENSO teleconnections and its decadal change. Same as Fig. 1, but with a 31-year-sliding window (JPEG 1773.2 kb)

382_2023_6878_MOESM3_ESM.jpeg

Supplementary material 3Figure S3. Forced component of the decadal variations of ENSO-LST teleconnections. The first mode of three-season EOF analysis on the associated 11-year-sliding anomalies regression maps with an interval of five years for the 13-ensembles mean (JPEG 924.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Li, Y., Liu, F. et al. Stability of ENSO teleconnections during the last millennium in CESM. Clim Dyn 61, 5699–5714 (2023). https://doi.org/10.1007/s00382-023-06878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06878-5

Keywords

Navigation