Skip to main content

Advertisement

Log in

Impacts of the land use and land-cover changes on local hydroclimate in southwestern Amazon

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the effects of advancing deforestation in the southwestern Amazon on local hydroclimate. For this purpose, a high-resolution mesoscale model, coupled with a land surface model and a hydrologic routing model, is integrated for five years in two experiments, one control without changes in land use and another changing land use annually. During the rainy season, simulated higher precipitation volumes are reduced with the expansion of pasture lands. In the dry periods, mainly in August, there is an increase in precipitation over some deforested areas, which can be associated with mesoscale circulations induced by the heterogeneous surface. In general, land-use changes reduce evapotranspiration and the net radiation at the surface and increase the sensible heat flux during the dry season. In the rainy period, there is an increase in evapotranspiration with the intensification of deforestation, which modifies the other components of energy balance. Results suggest that the impact of LUCC on the local climate is more affected by conditions that generate precipitation extremes (El Niño/La Niña events) than by the abrupt increase in the annual deforestation rate. Land-use changes reduce the streamflow in all sub-basins of Ji-Parana during the dry season. In the rainy season, LUCC increases the streamflow during periods with normal precipitation conditions and La Niña in almost all sub-basins, except in the sub-basin with more than 20% deforestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are not publicly available due to lack of structure and resources but are available from the corresponding author on reasonable request.

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the South American sector: surface, climate. Mon Weather Rev 116:505–524

    Article  Google Scholar 

  • Almeida CAD, Coutinho AC, Esquerdo JCDM, Adami M, Venturieri A, Diniz CG, Dessay N, Durieux L, Gomes AR (2016) High spatial resolution land use and land cover mapping of the brazilian legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz 46:291–302

    Article  Google Scholar 

  • Alves DS (2002a) An analysis of the geographical patterns of deforestation in the brazilian Amazon in the period 1991–1996. Deforestation and land use in the Amazon 95–106

  • Alves DS (2002b) Space–time dynamics of deforestation in brazilian Amazon. Int J Remote Sens 23:2903–2908

    Article  Google Scholar 

  • Alves DS, Pereira JLG, De Sousa CL, Soares JV, Yamaguchi F (1999) Characterizing landscape changes in central rondonia using landsat TM imagery. Int J Remote Sens 20:2877–2882. https://doi.org/10.1080/014311699211859

    Article  Google Scholar 

  • Alves DS, Escada M, Pereira J, Linhares C (2003) Land use intensification and abandonment in Rondônia. Int J Remote Sens 24:899–903

    Article  Google Scholar 

  • Arima EY, Walker RT, Perz S, Souza C (2016) Explaining the fragmentation in the brazilian Amazon forest. J Land Use Sci 11:257–277. https://doi.org/10.1080/1747423X.2015.1027797

    Article  Google Scholar 

  • Baidya Roy S (2009) Mesoscale vegetation-atmosphere feedbacks in Amazon. J Geophys Research-Atmospheres 114:D20111. https://doi.org/10.1029/2009JD012001

    Article  Google Scholar 

  • Baidya Roy S, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazon. J Phys Res 107(D20):1–12. https://doi.org/10.1029/2000JD000266

    Article  Google Scholar 

  • Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo A (2017) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21:589–615. https://doi.org/10.5194/hess-21-589-2017

    Article  Google Scholar 

  • Bruno R, da Rocha HR, de Freitas HC, Goulden ML, Miller SD (2006) Soil moisture dynamics in an eastern Amazon tropical forest. Hydrol Process 20:2477–2489

    Article  Google Scholar 

  • Cai W, McPhaden MJ, Grimm AM et al (2020) Climate impacts of the El Niño–Southern Oscillation on South America. Nat Rev Earth Environ 1:215–231. https://doi.org/10.1038/s43017-020-0040-3

    Article  Google Scholar 

  • Chagnon FJF, Bras RL (2005) Contemporary climate change in the Amazon. Geophys Res Lett 32(13):1–4. https://doi.org/10.1029/2005GL022722

    Article  Google Scholar 

  • Chagnon FJF, Bras RL, Wang J (2004) Climatic shift in patterns of shallow clouds over the Amazon. Geophys Reasearch Lett. https://doi.org/10.1029/2004GL021188

    Article  Google Scholar 

  • Chen F, Janjić Z, Mitchell K (1997) Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary Layer Meteorol 85(3):391–421. https://doi.org/10.1023/A:1000531001463

    Article  Google Scholar 

  • Chou SC, Bustamante JF, Gomes JL (2005) Evaluation of Eta Model seasonal precipitation forecasts over South America. Nonlinear Process Geophys 12(4):537–555. https://doi.org/10.5194/npg-12-537-2005

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes JL, Bustamante J, Tavares P (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38(3–4):635–653. https://doi.org/10.1007/s00382-011-1002-8

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J (2014) Assessment of Climate Change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Change 03(05):512–527. https://doi.org/10.4236/ajcc.2014.35043

    Article  Google Scholar 

  • Chou, Nunes et al (2019) Springer Nature

  • Correia FWS, Alvalá RCS, Manzi AO (2008) Modeling the impacts of land cover change in Amazon: a regional climate model (RCM) simulation study. Theoret Appl Climatol 93(3–4):225–244. https://doi.org/10.1007/s00704-007-0335-z

    Article  Google Scholar 

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazon. J Clim 13(1):18–34. https://doi.org/10.1175/15200442(2000)013%3C0018:CEODAD%3E2.0.CO;2

    Article  Google Scholar 

  • Cunge JA (1969) On the subject of the flood propagation computation method. J Hydraul Res 7:205–230

    Article  Google Scholar 

  • D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazon: a review on scale and resolution. Int J Climatol 633–647

  • da Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LDVO, de Freitas HC, Silva Figueira AM (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32. https://doi.org/10.1890/02-6001

    Article  Google Scholar 

  • da Silva RR, Werth D, Avissar R (2008) Regional impacts of future land-cover changes on the Amazon basin wet-season climate. J Clim 21(6):1153–1170. https://doi.org/10.1175/2007JCLI1304.1

    Article  Google Scholar 

  • de Oliveira Filho FJB, Metzger JP (2006) Thresholds in landscape structure for three common deforestation patterns in the brazilian Amazon. Landscape Ecol 21(7):1061–1073. https://doi.org/10.1007/s10980-006-6913-0

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, H??lm EV, Isaksen L, K??llberg P, K??hler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Th??paut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dijkshoorn JA, Huting JRM, Tempel P (2005) Update of the 1:5 million Soil and Terrain Database for Latin America and the Caribbean (SOTERLAC; version 2.0), Report 2005/01, ISRIC – World Soil Information, Wageningen, Netherlands

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Research: Atmos 108(D22). https://doi.org/10.1029/2002JD003296

  • Espinoza JC et al (2012) From drought to flooding: understanding the abrupt 2010–2011 hydrological annual cycle in the Amazonas River and tributaries. Environ Res Lett 7:024008

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Frappart F, Lavado W, Santini W, Guyot JL (2013) The major floods in the Amazonas river and tributaries (western Amazon basin) during the 1970–2012 period: a focus on the 2012 flood. J Hydrometeorol 14:1000–1008

    Article  Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle Radar Topography Mission produces a wealth of data. EOS (Transactions American Geophysical Union) 81:583–585

    Article  Google Scholar 

  • Farr TG et al (2007) The Shuttle Radar Topography Mission. Review of Geophysics 45: RG2004

  • Fels SB, Schwarzkopf MD (1975) The Simplified Exchange Approximation: a New Method for Radiative transfer calculations. J Atmos Sci 32(7):1475–1488. https://doi.org/10.1175/1520-0469(1975)032%3C1475:TSEAAN%3E2.0.CO;2

    Article  Google Scholar 

  • Findell KL, Shevliakova E, Milly PCD, Stouffer RJ (2007) Modeled impact of anthropogenic land cover change on climate. J Clim 20(14):3621–3634. https://doi.org/10.1175/JCLI4185.1

    Article  Google Scholar 

  • Guillod BP, Orlowsky B, Miralles DG, Teuling AJ, Seneviratne SI (2015) Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat Commun 6. https://doi.org/10.1038/ncomms7443

  • Harmel RD, Veith TL, Arnold JG, Van Liew MW, Bingner RL, Moriasi DN (2007) Model evaluation guidelines for systematic quantification of Accuracy in Watershed Simulations. Trans ASABE 50(3):885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  • Imbach P, Chou SC, Lyra A, Rodrigues D, Rodriguez D, Latinovic D et al (2018) Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 13(4):e0193570. https://doi.org/10.1371/journal.pone.0193570

    Article  Google Scholar 

  • Instituto Nacional de Pesquisas Espaciais – INPEa, Coordenação Geral de Observação da Terra – OBT (2022) ‘Projeto PRODES: monitoramento da Floresta Amazônica Brasileira por Satélite’. http://www.obt.inpe.br/prodes (accessed 18 March 2022)

  • Instituto Nacional de Pesquisas Espaciais – INPEb, Coordenação Geral de Observação da Terra – OBT (2022) ‘Projeto TerraClass: Mapeamento do Uso e Cobertura da Terra na Amazônia Legal Brasileira’. http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php (accessed 18 March 2022)

  • Instituto Nacional de Meteorologia – INMET (1992) Normais Climatológicas (1961–1990). INMET – Instituto Nacional de Meteorologia/Ministério da Agricultura e Reforma Agrária: Brasília

  • Janjić ZI (1994) The step-mountain Eta Coordinate Model: further developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon Weather Rev 927–945

  • Jarvis PG, Series B (1976) Biological Sciences The Royal Society Phil. Trans R Soc Lond B 273(273): 593–610

    Google Scholar 

  • Khanna J, Medvigy D, Fueglistaler S, Walko R (2017) Regional dry-season climate changes due to three decades of Amazonn deforestation. Nat Clim Change 7(3):200–204. https://doi.org/10.1038/nclimate3226

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. https://doi.org/10.1126/science.1100217

    Article  Google Scholar 

  • Lacis A, Hansen J (1974) A parameterization for the absorption of Solar Radiation in the Earth’s atmosphere. J Atmos Sci 118–133

  • Lee T-H, Lo M-H (2021) The role of El Niño in modulating the effects of deforestation in the Maritime Continent. Environ Res Lett 16. https://doi.org/10.1088/1748-9326/abe88e

  • Lejeune Q, Davin EL, Guillod BP, Seneviratne SI (2015) Influence of Amazonn deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim Dyn 44(9–10):2769–2786. https://doi.org/10.1007/s00382-014-2203-8

    Article  Google Scholar 

  • Linhares C (2005) Influência do Desflorestamento na Dinâmica da Resposta Hidrológica na Bacia do Rio Ji-Paraná/RO. Thesis

  • Lyra A, Tavares P, Chou SC, Sueiro G, Dereczynski C, Sondermann M, Silva A, Marengo J, Giarolla A (2018) Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theoret Appl Climatol 132(1–2):663–682. https://doi.org/10.1007/s00704-017-2067-z

    Article  Google Scholar 

  • Machado LA (1998) A fronteira agrícola na Amazônia brasileira. In Geografia e Meio Ambiente no Brasil, edited by B. K. Becker, A. Christofoletti, F. R. Davidovich and P. R. Geiger, 2nd edn (São Paulo: Hucitec), pp. 181–217

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves L, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Parana River basins. Clim Dyn 38(9–10):1829–1848. https://doi.org/10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Medvigy D, Walko RL, Avissar R (2011) Effects of Deforestation on Spatiotemporal Distributions of Precipitation in South America. J Clim 24(8):2147–2163. https://doi.org/10.1175/2010JCLI3882.1

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysical Physics and Space Physics 20:851–875

    Article  Google Scholar 

  • Mesinger F (1984) A blocking technique for representation of mountains in atmospheric models. Rivista di Meteorologia Aeronautica 44:195–202

    Google Scholar 

  • Mesinger F, Chou SC, Gomes JL, Jovic D, Bastos P, Bustamante JF, Lazic L, Lyra AA, Morelli S, Ristic I, Veljovic K (2012) An upgraded version of the Eta model. Meteorol Atmos Phys 116(3–4):63–79. https://doi.org/10.1007/s00703-012-0182-z

    Article  Google Scholar 

  • Negri AJ, Adler RF, Xu L, Surratt J (2004) The impact of Amazonn deforestation on dry season rainfall. J Clim 17(6):1306–1319. https://doi.org/10.1175/1520-0442(2004)017%3C1306:TIOADO%3E2.0.CO;2

    Article  Google Scholar 

  • Niu GY, Yang ZL (2004) Effects of vegetation canopy processes on snow surface energy and mass balances. J Geophys Res D: Atmos 109(23):1–15. https://doi.org/10.1029/2004JD004884

    Article  Google Scholar 

  • Niu GY, Yang ZL, Dickinson RE, Gulden LE (2005) A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J Geophys Res Atmos 110(21):1–15. https://doi.org/10.1029/2005JD006111

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J Geophys Res 112. https://doi.org/10.1029/2006JD007522

  • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116(12):1–19. https://doi.org/10.1029/2010JD015139

    Article  Google Scholar 

  • Nobre C, Sellers PJ, Shukla J (1991) Amazon Deforestation and Regional Climate Change. J Clim 957–988

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta Model. Theoret Appl Climatol 99:75–93. https://doi.org/10.1007/s00704-009-0123-z

    Article  Google Scholar 

  • Pilotto IL, Chou SC, Nobre P (2012) Seasonal climate hindcasts with Eta model nested in CPTEC coupled ocean-atmosphere general circulation model. Theoret Appl Climatol 110(3):437–456. https://doi.org/10.1007/s00704-012-0633-y

    Article  Google Scholar 

  • Pilotto IL, Rodríguez DA, Tomasella J, Sampaio G, Chou SC (2015) Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazon. Meteorology and Atmospheric Physics. Springer Vienna 127(6):711–723. https://doi.org/10.1007/s00703-015-0399-8

    Article  Google Scholar 

  • Pilotto IL, Rodríguez DA, Chan Chou S, Tomasella J, Sampaio G, Gomes JL (2017) Effects of the surface heterogeneities on the local climate of a fragmented landscape in Amazon using a tile approach in the Eta/Noah-MP model. Q J R Meteorol Soc 143(704):1565–1580. https://doi.org/10.1002/qj.3026

    Article  Google Scholar 

  • Pitman AJ, Lorenz R (2016) Scale dependence of the simulated impact of Amazonn deforestation on regional climate. Environ Res Lett 11(9). https://doi.org/10.1088/1748-9326/11/9/094025

  • Resende NC, Miranda JH, Cooke R, Chu ML, Chou SC (2019) Impacts of regional climate change on the runoff and root water uptake in corn crops in Parana, Brazil. Agric Water Manage 221:556–565. https://doi.org/10.1016/j.agwat.2019.05.018

    Article  Google Scholar 

  • Rodriguez DA, Tomasella J (2016) On the ability of large-scale hydrological models to simulate land use and land cover change impacts in Amazonn basins. Hydrol Sci J 61(10):1831–1846. https://doi.org/10.1080/02626667.2015.1051979

    Article  Google Scholar 

  • Rodriguez DA, Tomasella J, Linhares C (2010) Is the forest conversion to pasture affecting the hydrological response of Amazon catchments? Signals in the Ji-Paraná Basin. Hydrol Process 24(10):1254–1269. https://doi.org/10.1002/hyp.7586

    Article  Google Scholar 

  • Rodriguez DA, Chou SC, Tomasella J, Demaria EMC (2014) Impacts of landscape fragmentation on simulated precipitation fields in the Amazon sub-basin of Ji-Paraná using the Eta model. Theoret Appl Climatol 115(1–2):121–140. https://doi.org/10.1007/s00704-013-0866-4

    Article  Google Scholar 

  • Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:L17709. https://doi.org/10.1029/2007GL030612

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209. https://doi.org/10.1038/nature05095

    Article  Google Scholar 

  • Tavares PS, Giarolla A, Chou SC, Silva AJP, Lyra AA (2018) Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Reg Environ Change (2017) 18: 873

  • Uvo CB, Repelli C, Zebiak S, Kushnir Y (1998) The relationship between tropical\Pacific and Atlantic SST and northeast Brazil monthly precipitation. J Clim 11:551–562

    Article  Google Scholar 

  • von Randow C, Manzi AO, Kruijt B, de Oliveira PJ, Zanchi FB, Silva RL, Hodnett MG, Gash JHC, Elbers JA, Waterloo MJ, Cardoso FL, Kabat P (2004) Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazon. Theoret Appl Climatol 78(1–3):5–26. https://doi.org/10.1007/s00704-004-0041-z

    Article  Google Scholar 

  • Wang J, Bras RL, Eltahir EB (2000) The impact of observed Deforestation on the Mesoscale distribution of Rainfall and Clouds in Amazon. J Hydrometeorol 1(3):267–286. https://doi.org/10.1175/1525-7541(2000)001%3C0267:TIOODO%3E2.0.CO;2

    Article  Google Scholar 

  • Wang J, Chagnon FJF, Williams ER, Betts AK, Renno NO, Machado LAT, Bisht G, Knox R, Bras RL (2009) Impact of deforestation in the Amazon basin on cloud climatology. Proc Natl Acad Sci 106(10):3670–3674. https://doi.org/10.1073/pnas.0810156106

    Article  Google Scholar 

  • Williams E, Dall’Antonia A, Dall’Antonia V, de Almeida J, Suarez F, Liebmann B, Malhado ACM (2005) The drought of the century in the Amazon basin: an analysis of the regional variation of rainfall in South America in 1926. Acta Amazonia 35(2):231–238. https://doi.org/10.1590/S0044-59672005000200013

    Article  Google Scholar 

  • Yang RQ, Friedl MA (2003) Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. J Geophys Research-Atmospheres 108. https://doi.org/10.1029/2002jd003109

  • Zhang R-H, Endoh M (1994) Simulation of the 1986-87 El Niño and 1988 La Niño events with a free surface tropical Pacific OGCM. J Geophys Res 99:7743–7759

    Article  Google Scholar 

  • Zhao Q, Carr FH (2002) A Prognostic Cloud Scheme for operational NWP models. Mon Weather Rev 125(8):1931–1953. https://doi.org/10.1175/1520-0493(1997)125%3C1931:apcsfo%3E2.0.co;2

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil – Agência Nacional de Águas (CAPES-ANA) - Finance Code 88887.115869/2015-01. The authors thank the São Paulo Research Foundation (FAPESP) Grant 2014/50848-9 and Grant 2018/02982-9, the National Council for Scientific and Technological Development (CNPq) Grant 308358/2018-0, the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014-1, the CAPES Grant 16/2014, and the CNPq-ANA Grant 446197/2015-7.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil – Agência Nacional de Águas (CAPES-ANA) – Grant number 88887.115869/2015-01.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection were performed by Isabel L. Pilotto. Analysis was performed by Isabel L. Pilotto and Daniel A. Rodriguez. The first draft of the manuscript was written by Isabel L. Pilotto and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Isabel L. Pilotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilotto, I.L., Rodriguez, D.A., Chou, SC. et al. Impacts of the land use and land-cover changes on local hydroclimate in southwestern Amazon. Clim Dyn 61, 5597–5612 (2023). https://doi.org/10.1007/s00382-023-06872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06872-x

Keywords

Navigation