Skip to main content

Advertisement

Log in

Southern hemisphere monsoonal system during superinterglacial stages: MIS5e, MIS11c and MIS31

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The current study investigates changes in Austral Summer Monsoon based on numerical experiments conducted with the coupled ICTP-CGCM model. The interannual variability and intensity of the monsoonal system have been analyzed from vorticity indices and air-sea interaction in Africa, Australia and South America. We focus on interglacial stages MIS5e (127 ka), MIS11c (409 ka) and MIS31 (1072 ka). Results show orbitally-driven decreased summer precipitation and slightly shifted monsoon onset and demise with respect to present day conditions. Sensitivity experiments indicate that monsoons are forced not only by the dominant effect of insolation, but also by remote teleconnections, such as the equatorial Atlantic and Pacific ocean basins. During those interglacial stages, cooling occurs in the Southern Hemisphere whereas Northern Hemisphere substantially warms. This induces meridional displacement of oceanic subtropical high pressure systems and the equatorial convergence zone. Regionally, these mechanisms contribute to droughts over the Amazon and northeastern Brazil, northern Australia and southern Africa. Monsoonal rainfall shows different responses to precessional forcing, as well as the relationship between the monsoon and Niño 3.4 differs among the interglacial stages. Results also indicate a weaker influence of the equatorial Pacific Ocean on the Austral summer monsoon for the MIS31 interglacial stage as compared to current climate conditions across Africa and Australia. On the other hand, South America monsoon is strongly influenced by Niño 3.4 and tropical Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abrantes F (2003) A 340,000 year continental climate record from tropical africa-news from opal phytoliths from the equatorial atlantic. Earth Planet Sci Lett 209(1–2):165–179

    Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG (1990) U-th ages obtained by mass spectrometry in corals from barbados: sea level during the past 130,000 years. Nature 346(6283):456–458

    Google Scholar 

  • Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H, Kipfstuhl S, Chappellaz J (2015) Revision of the epica dome c co2 record from 800 to 600 kyr before present. Geophys Res Lett 42(2):542–549

    Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317

    Google Scholar 

  • Bowler JM, Wyrwoll KH, Lu Y (2001) Variations of the northwest australian summer monsoon over the last 300,000 years: the paleohydrological record of the gregory (mulan) lakes system. Quat Int 83:63–80

    Google Scholar 

  • Braconnot P, Marzin C, Grégoire L, Mosquet E, Marti O (2008) Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim Past 4(4):281–294

    Google Scholar 

  • Braconnot P, Harrison S, Kageyama M, Bartlein P, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimate data. Nat Clim Change 2:417–424. https://doi.org/10.1038/NCLIMATE1456

    Article  Google Scholar 

  • Burrough SL, Thomas DS, Bailey RM (2009) Mega-lake in the kalahari: a late pleistocene record of the palaeolake makgadikgadi system. Quat Sci Rev 28(15–16):1392–1411

    Google Scholar 

  • Cabos W, de la Vara A, Koseki S (2019) Tropical atlantic variability: observations and modeling. Atmosphere 10(9) https://www.mdpi.com/2073-4433/10/9/502

  • Caley T, Extier T, Collins JA, Schefuß E, Dupont L, Malaizé B, Rossignol L, Souron A, McClymont EL, Jimenez-Espejo FJ et al (2018) A two-million-year-long hydroclimatic context for hominin evolution in southeastern africa. Nature 560(7716):76–79

    Google Scholar 

  • Carolin SA, Cobb KM, Lynch-Stieglitz J, Moerman JW, Partin JW, Lejau S, Malang J, Clark B, Tuen AA, Adkins JF (2016) Northern borneo stalagmite records reveal west pacific hydroclimate across mis 5 and 6. Earth Planet Sci Lett 439:182–193

    Google Scholar 

  • Carré M, Braconnot P, Elliot M, D’agostino R, Schurer A, Shi X, Marti O, Lohmann G, Jungclaus J, Cheddadi R et al (2021) High-resolution marine data and transient simulations support orbital forcing of enso amplitude since the mid-holocene. Quat Sci Rev 268:107125

    Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in amazonia and biodiversity. Nat Commun 4(1):1–6

    Google Scholar 

  • Clement AC, Cane MA, Seager R (2001) An orbitally driven tropical source for abrupt climate change. J Clim 14(11):2369–2375

    Google Scholar 

  • Coletti A, DeConto R, Brigham-Grette J, Melles M (2015) A gcm comparison of pleistocene super-interglacial periods in relation to lake el’gygytgyn, ne arctic russia. Clim Past 11(7):979–989

    Google Scholar 

  • Collini EA, Berbery EH, Barros VR, Pyle ME (2008) How does soil moisture influence the early stages of the south american monsoon? J Clim 21(2):195–213. https://doi.org/10.1175/2007JCLI1846.1

    Article  Google Scholar 

  • Collins JA, Schefuß E, Govin A, Mulitza S, Tiedemann R (2014) Insolation and glacial-interglacial control on southwestern african hydroclimate over the past 140 000 years. Earth Planet Sci Lett 398:1–10

    Google Scholar 

  • Contreras S, Lange CB, Pantoja S, Lavik G, Rincón-Martínez D, Kuypers MM (2010) A rainy northern atacama desert during the last interglacial. Geophys Res Lett 37(23)

  • Crundwell M, Scott G, Naish T, Carter L (2008) Glacial-interglacial ocean climate variability from planktonic foraminifera during the mid-pleistocene transition in the temperate southwest pacific, odp site 1123. Palaeogeogr Palaeoclimatol Palaeoecol 260(1–2):202–229

    Google Scholar 

  • D’Agostino R, Brown JR, Moise AF, Nguyen H, Dias PLS, Jungclaus JH (2020) Contrasting southern hemisphere monsoon response: mid-holocene orbital forcing versus future greenhouse gas-induced global warming. J Clim 33:9595–9613. https://doi.org/10.1175/JCLI-D-19-0672.1

    Article  Google Scholar 

  • Dang H, Jian Z, Kissel C, Bassinot F (2015) Precessional changes in the western equatorial p acific hydroclimate: A 240 kyr marine record from the h almahera s ea, e ast i ndonesia. Geochem Geophys Geosyst 16(1):148–164

    Google Scholar 

  • Daniau AL, Goñi MFS, Martinez P, Urrego DH, Bout-Roumazeilles V, Desprat S, Marlon JR (2013) Orbital-scale climate forcing of grassland burning in southern africa. Proc Natl Acad Sci 110(13):5069–5073

    Google Scholar 

  • de Garidel-Thoron T, Rosenthal Y, Bassinot F, Beaufort L (2005) Stable sea surface temperatures in the western pacific warm pool over the past 1.75 million years. Nature 433(7023):294–298

    Google Scholar 

  • Dickson AJ, Leng MJ, Maslin MA, Röhl U (2010) Oceanic, atmospheric and ice-sheet forcing of south east atlantic ocean productivity and south african monsoon intensity during mis-12 to 10. Quat Sci Rev 29(27–28):3936–3947

    Google Scholar 

  • Dupont LM, Kuhlmann H (2017) Glacial-interglacial vegetation change in the zambezi catchment. Quat Sci Rev 155:127–135

    Google Scholar 

  • Dyez KA, Ravelo AC (2014) Dynamical changes in the tropical pacific warm pool and zonal sst gradient during the pleistocene. Geophys Res Lett 41(21):7626–7633

    Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V et al (2014) Evaluation of climate models. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 741–866

  • Foley JA (1995) Numerical models of the terrestrial biosphere. J Biogeogr 837–842

  • Frédoux A (1994) Pollen analysis of a deep-sea core in the gulf of guinea: vegetation and climatic changes during the last 225,000 years bp. Palaeogeogr Palaeoclimatol Palaeoecol 109(2–4):317–330

    Google Scholar 

  • Fritz SC, Baker PA, Lowenstein TK, Seltzer GO, Rigsby CA, Dwyer GS, Tapia PM, Arnold KK, Ku TL, Luo S (2004) Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of south america. Quat Res 61(1):95–104

    Google Scholar 

  • Geen R, Bordoni S, Battisti DS, Hui K (2020) Monsoons, ITCZs, and the concept of the global monsoon. Rev Geophys 58(4):e2020RG000700

    Google Scholar 

  • Gingele F, Müller P, Schneider R (1998) Orbital forcing of freshwater input in the zaire fan area-clay mineral evidence from the last 200 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 138(1–4):17–26

    Google Scholar 

  • Gosling WD, Bush MB, Hanselman JA, Chepstow-Lusty A (2008) Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical andes (bolivia/peru). Palaeogeogr Palaeoclimatol Palaeoecol 259(1):35–50

    Google Scholar 

  • Govin A, Chiessi CM, Zabel M, Sawakuchi A, Heslop D, Hörner T, Zhang Y, Mulitza S (2014) Terrigenous input off northern south america driven by changes in amazonian climate and the north brazil current retroflection during the last 250 ka. Clim Past 10(2):843–862

    Google Scholar 

  • Hayward BW, Sabaa AT, Kolodziej A, Crundwell MP, Steph S, Scott GH, Neil HL, Bostock HC, Carter L, Grenfell HR (2012) Planktic foraminifera-based sea-surface temperature record in the tasman sea and history of the subtropical front around new zealand, over the last one million years. Mar Micropaleontol 82:13–27

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. https://doi.org/10.1175/JCLI3990.1

    Article  Google Scholar 

  • Herbert T, Schuffert J, Andreasen D, Heusser L, Lyle M, Mix A, Ravelo A, Stott L, Herguera J (2001) Collapse of the california current during glacial maxima linked to climate change on land. Science 293(5527):71–76

    Google Scholar 

  • Herbert TD, Peterson LC, Lawrence KT, Liu Z (2010) Tropical ocean temperatures over the past 3.5 million years. Science 328(5985):1530–1534

    Google Scholar 

  • Hersbach H (2016) The era5 atmospheric reanalysis. AGUFM 2016:NG33D-01

    Google Scholar 

  • Ho SL, Mollenhauer G, Lamy F, Martínez-Garcia A, Mohtadi M, Gersonde R, Hebbeln D, Nunez-Ricardo S, Rosell-Melé A, Tiedemann R (2012) Sea surface temperature variability in the pacific sector of the southern ocean over the past 700 kyr. Paleoceanography 27(4)

  • Horikawa K, Murayama M, Minagawa M, Kato Y, Sagawa T (2010) Latitudinal and downcore (0–750 ka) changes in nalkane chain lengths in the eastern equatorial pacific. Quat Res 73(3):573–582

    Google Scholar 

  • Hou A, Bahr A, Schmidt S, Strebl C, Albuquerque AL, Chiessi CM, Friedrich O (2020) Forcing of western tropical south atlantic sea surface temperature across three glacial-interglacial cycles. Global Planet Change 188:103150

    Google Scholar 

  • Ivory SJ, Blome MW, King JW, McGlue MM, Cole JE, Cohen AS (2016) Environmental change explains cichlid adaptive radiation at lake malawi over the past 1.2 million years. Proc Natl Acad Sci 113(42):11895–11900

    Google Scholar 

  • Jorgetti T, Silva Dias P, Freitas E (2014) The relationship between south atlantic sst and sacz intensity and positioning. Clim Dyn 42:3077–3086. https://doi.org/10.1007/s00382-013-1998-z

    Article  Google Scholar 

  • Justino F, Lindemann D, Kucharski F, Wilson A, Bromwich D, Stordal F (2017) Oceanic response to changes in the WAIS and astronomical forcing during the MIS31 superinterglacial. Clim Past 13(9):1081–1095

    Google Scholar 

  • Justino F, Kucharski F, Lindemann D, Wilson A, Stordal F (2019) A modified seasonal cycle during MIS31 super-interglacial favors stronger interannual ENSO and monsoon variability. Clim Past 15(2):735–749

    Google Scholar 

  • Justino F, Gurjão C, Lindemann D (2021) Climate response to drastically modified PDO, PNA and NAM in the superinterglacial MIS 31. Boreas. https://doi.org/10.1111/bor.12556

    Article  Google Scholar 

  • Kawamura H, Holbourn A, Kuhnt W (2006) Climate variability and land-ocean interactions in the indo pacific warm pool: a 460-ka palynological and organic geochemical record from the timor sea. Mar Micropaleontol 59(1):1–14

    Google Scholar 

  • Kemp C, Tibby J, Arnold L, Barr C, Gadd P, Marshall J, McGregor G, Jacobsen G (2020) Climates of the last three interglacials in subtropical eastern australia inferred from wetland sediment geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 538:109463

    Google Scholar 

  • Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical pacific and the north atlantic oscillation. Clim Dyn 26(1):79–91

    Google Scholar 

  • Kucharski F, Ikram F, Molteni F, Farneti R, Kang IS, No HH, King MP, Giuliani G, Mogensen K (2016) Atlantic forcing of pacific decadal variability. Clim Dyn 46(7–8):2337–2351

    Google Scholar 

  • Lawrence KT, Herbert TD, Brown CM, Raymo ME, Haywood AM (2009) High-amplitude variations in north atlantic sea surface temperature during the early pliocene warm period. Paleoceanography 24(2)

  • Lea DW, Pak DK, Spero HJ (2000) Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science 289(5485):1719–1724

    Google Scholar 

  • Lea DW, Pak DK, Belanger CL, Spero HJ, Hall MA, Shackleton NJ (2006) Paleoclimate history of galápagos surface waters over the last 135,000 yr. Quat Sci Rev 25(11–12):1152–1167

    Google Scholar 

  • Li L, Li Q, Tian J, Wang P, Wang H, Liu Z (2011) A 4-ma record of thermal evolution in the tropical western pacific and its implications on climate change. Earth Planet Sci Lett 309(1–2):10–20

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic \(\delta\)18o records. Paleoceanography 20(1)

  • Liu Z, Altabet MA, Herbert TD (2005) Glacial-interglacial modulation of eastern tropical north pacific denitrification over the last 1.8-myr. Geophys Res Lett 32(23)

  • Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B, Timmermann A, Smith R, Lohmann G, Zheng W, Timm O (2014) The holocene temperature conundrum. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1407229111

    Article  Google Scholar 

  • Lo L, Chang SP, Wei KY, Lee SY, Ou TH, Chen YC, Chuang CK, Mii HS, Burr GS, Chen MT et al (2017) Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles. Sci Reports 7(1):1–7

    Google Scholar 

  • Lückge A, Mohtadi M, Rühlemann C, Scheeder G, Vink A, Reinhardt L, Wiedicke M (2009) Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern sumatra during the past 300,000 years. Paleoceanography 24(1)

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379

    Google Scholar 

  • Madec G (2008) Nemo ocean engine. note du pole de modélisation, institut pierre-simon laplace (ipsl). France 27:1288–1619

    Google Scholar 

  • Madec G (2012) Nemo ocean engine. note du pole de modélisation de l’institut pierre-simon laplace, france, no. 27. issn no. 1288–1619

  • Madec G, Delecluse P, Imbard M, Lévy C (1998) Opa 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation 11:91p

    Google Scholar 

  • Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 ky monsoon record from lake eyre, australia: insolation-forcing implications and unexpected holocene failure. Geology 32(10):885–888

    Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the south american monsoon system. Int J Climatol 32(1):1–21. https://doi.org/10.1002/joc.2254

    Article  Google Scholar 

  • Martínez-Garcia A, Rosell-Melé A, McClymont EL, Gersonde R, Haug GH (2010) Subpolar link to the emergence of the modern equatorial pacific cold tongue. Science 328(5985):1550–1553

    Google Scholar 

  • McClymont EL, Rosell-Melé A (2005) Links between the onset of modern walker circulation and the mid-pleistocene climate transition. Geology 33(5):389–392

    Google Scholar 

  • McClymont EL, Rosell-Melé A, Giraudeau J, Pierre C, Lloyd JM (2005) Alkenone and coccolith records of the mid-pleistocene in the south-east atlantic: Implications for the u37k’ index and south african climate. Quat Sci Rev 24(14–15):1559–1572

    Google Scholar 

  • Medina-Elizalde M, Lea DW (2005) The mid-pleistocene transition in the tropical pacific. Science 310(5750):1009–1012

    Google Scholar 

  • Medina-Elizalde M, Lea DW, Fantle MS (2008) Implications of seawater mg/ca variability for plio-pleistocene tropical climate reconstruction. Earth Planet Sci Lett 269(3–4):585–595

    Google Scholar 

  • Melles M, Brigham-Grette J, Minyuk PS, Nowaczyk NR, Wennrich V, DeConto RM, Anderson PM, Andreev AA, Coletti A, Cook TL et al (2012) 2.8 million years of arctic climate change from lake el’gygytgyn, ne russia. Science 337(6092):315–320

    Google Scholar 

  • Miller GH, Fogel ML, Magee JW, Gagan MK (2016) Disentangling the impacts of climate and human colonization on the flora and fauna of the australian arid zone over the past 100 ka using stable isotopes in avian eggshell. Quat Sci Rev 151:27–57

    Google Scholar 

  • Moernaut J, Verschuren D, Charlet F, Kristen I, Fagot M, De Batist M (2010) The seismic-stratigraphic record of lake-level fluctuations in lake challa: hydrological stability and change in equatorial east africa over the last 140 kyr. Earth Planet Sci Lett 290(1–2):214–223

    Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments. Clim Dyn. https://doi.org/10.1007/s00382-002-0268-2

    Article  Google Scholar 

  • Montoya M, von Storch H, Crowley TJ (2000) Climate simulation for 125 kyr bp with a coupled ocean-atmosphere general circulation model. J Clim 13(6):1057–1072

    Google Scholar 

  • Moss PT, Kershaw AP (2007) A late quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern australia based on odp site 820. Palaeogeogr Palaeoclimatol Palaeoecol 251(1):4–22

    Google Scholar 

  • Naafs BDA, Hefter J, Gruetzner J, Stein R (2013) Warming of surface waters in the mid-latitude north atlantic during heinrich events. Paleoceanography 28(1):153–163

    Google Scholar 

  • Neelin JD, Latif M, Jin F (1994) Dynamics of coupled ocean-atmosphere models: the tropical problem. Ann Rev Fluid Mech 26(1):617–659. https://doi.org/10.1146/annurev.fl.26.010194.003153

    Article  Google Scholar 

  • Nogués-Paegle J, Mechoso CR, Fu R, Berbery EH, Chao WC, Chen TC, Cook K, Diaz AF, Enfield D, Ferreira R et al (2002) Progress in pan american clivar research: understanding the south american monsoon. Meteorologica 27(12):1–30

    Google Scholar 

  • Oppo D, McManus J, Cullen J (1998) Abrupt climate events 500,000 to 340,000 years ago: evidence from subpolar north atlantic sediments. Science 279(5355):1335–1338

    Google Scholar 

  • Otto-Bliesner BL, Brady EC, Zhao A, Brierley CM, Axford Y, Capron E, Govin A, Hoffman JS, Isaacs E, Kageyama M et al (2021) Large-scale features of last interglacial climate: results from evaluating the lig127k simulations for the coupled model intercomparison project (cmip6)-paleoclimate modeling intercomparison project (pmip4). Clim Past 17(1):63–94

    Google Scholar 

  • Owen RB, Muiruri VM, Lowenstein TK, Renaut RW, Rabideaux N, Luo S, Deino AL, Sier MJ, Dupont-Nivet G, McNulty EP et al (2018) Progressive aridification in east africa over the last half million years and implications for human evolution. Proc Natl Acad Sci 115(44):11174–11179

    Google Scholar 

  • Partridge T, Demenocal P, Lorentz S, Paiker M, Vogel J (1997) Orbital forcing of climate over south africa: a 200,000-year rainfall record from the pretoria saltpan. Quat Sci Rev 16(10):1125–1133

    Google Scholar 

  • Peltier W, Solheim L (2004) The climate of the earth at last glacial maximum: statistical equilibrium state and a mode of internal variability. Quat Sci Rev 23(3–4):335–357

    Google Scholar 

  • Pezzi L, Quadro M, Lorenzzetti J, Miller A, Rosa E, Lima L, Sutil U (2022) The effect of oceanic south atlantic convergence zone episodes on regional sst anomalies: the roles of heat fluxes and upper-ocean dynamics. Clim Dyn. https://doi.org/10.1007/s00382-022-06195-3

    Article  Google Scholar 

  • Placzek C, Quade J, Patchett P (2013) A 130 ka reconstruction of rainfall on the bolivian altiplano. Earth Planet Sci Lett 363:97–108

    Google Scholar 

  • Raymo M, Grant B, Horowitz M, Rau G (1996) Mid-pliocene warmth: stronger greenhouse and stronger conveyor. Mar Micropaleontol 27(1–4):313–326

    Google Scholar 

  • Rincón-Martínez D, Lamy F, Contreras S, Leduc G, Bard E, Saukel C, Blanz T, Mackensen A, Tiedemann R (2010) More humid interglacials in ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the intertropical convergence zone in the eastern tropical pacific. Paleoceanography 25(2)

  • Ritter B, Wennrich V, Medialdea A, Brill D, King G, Schneiderwind S, Niemann K, Fernández-Galego E, Diederich J, Rolf C et al (2019) Climatic fluctuations in the hyperarid core of the atacama desert during the past 215 ka. Sci Reports 9(1):1–13

    Google Scholar 

  • Rousseau DD, Puisségur JJ, Lécolle F (1992) West-european terrestrial molluscs assemblages of isotopic stage 11 (middle pleistocene): climatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 92(1–2):15–29

    Google Scholar 

  • Ruddiman W, Shackleton N, McIntyre A (1986) North atlantic sea-surface temperatures for the last 1.1 million years. Geol Soc Lond Special Publ 21(1):155–173

    Google Scholar 

  • Ruddiman WF, Raymo M, Martinson D, Clement B, Backman J (1989) Pleistocene evolution: Northern hemisphere ice sheets and north atlantic ocean. Paleoceanography 4(4):353–412

    Google Scholar 

  • Russon T, Elliot M, Sadekov A, Cabioch G, Corrège T, De Deckker P (2011) The mid-pleistocene transition in the subtropical southwest pacific. Paleoceanography 26(1)

  • Satoh M, Stevens B, Judt F, Khairoutdinov M, Lin SJ, Putman WM, Düben P (2019) Global cloud-resolving models. Curr Clim Change Reports 5(3):172–184

    Google Scholar 

  • Schaefer G, Rodger JS, Hayward BW, Kennett JP, Sabaa AT, Scott GH (2005) Planktic foraminiferal and sea surface temperature record during the last 1 myr across the subtropical front, southwest pacific. Mar Micropaleontol 54(3–4):191–212

    Google Scholar 

  • Siccha M, Biton E, Gildor H (2015) Red sea circulation during marine isotope stage 5e. Paleoceanography 30(4):384–401

    Google Scholar 

  • Simon MH, Ziegler M, Bosmans J, Barker S, Reason CJ, Hall IR (2015) Eastern south african hydroclimate over the past 270,000 years. Sci Reports 5(1):1–10

    Google Scholar 

  • Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4):1087. https://doi.org/10.1029/2003PA000920

    Article  Google Scholar 

  • Stuut JBW, Prins MA, Schneider RR, Weltje GJ, Jansen JF, Postma G (2002) A 300-kyr record of aridity and wind strength in southwestern africa: inferences from grain-size distributions of sediments on walvis ridge, se atlantic. Mar Geol 180(1–4):221–233

    Google Scholar 

  • Stuut JBW, Temmesfeld F, De Deckker P (2014) A 550 ka record of aeolian activity near north west cape, australia: inferences from grain-size distributions and bulk chemistry of se indian ocean deep-sea sediments. Quat Sci Rev 83:83–94

    Google Scholar 

  • Timm O, Timmermann A, Abe-Ouchi A, Saito F, Segawa T (2008) On the definition of seasons in paleoclimate simulations with orbital forcing. Paleoceanography. https://doi.org/10.1029/2007PA001461

    Article  Google Scholar 

  • Timmermann A, Lorenz S, An S, Clement A, Xie S (2007) The effect of orbital forcing on the mean climate and variability of the tropical pacific. J Clim 20(16):4147–4159

    Google Scholar 

  • Tomita H, Miura H, Iga SI, Nasuno T, Satoh M (2005) A global cloud-resolving simulation: preliminary results from an aqua planet experiment. Geophys Res Lett 32(8)

  • Trauth MH, Deino A, Strecker MR (2001) Response of the east african climate to orbital forcing during the last interglacial (130–117 ka) and the early last glacial (117–60 ka). Geology 29(6):499–502

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1–2):123–138

    Google Scholar 

  • Uliana E, Lange CB, Wefer G (2002) Evidence for congo river freshwater load in late quaternary sediments of odp site 1077 (5 s, 10 e). Palaeogeogr Palaeoclimatol Palaeoecol 187(1–2):137–150

    Google Scholar 

  • Valcke S (2013) The oasis3 coupler: a european climate modelling community software. Geosci Model Dev 6(2):373–388

    Google Scholar 

  • Valdes PJ, Scotese CR, Lunt DJ (2021) Deep ocean temperatures through time. Clim Past 17(4):1483–1506

    Google Scholar 

  • Van der Kaars W, Dam M (1995) A 135,000-year record of vegetational and climatic change from the bandung area, west-java, indonesia. Palaeogeogr Palaeoclimatol Palaeoecol 117(1–2):55–72

    Google Scholar 

  • Weldeab S, Lea DW, Schneider RR, Andersen N (2007) 155,000 years of west african monsoon and ocean thermal evolution. Science 316(5829):1303–1307

    Google Scholar 

  • Wild M (2020) The global energy balance as represented in cmip6 climate models. Clim Dyn 55:553–577. https://doi.org/10.1007/s00382-020-05282-7

    Article  Google Scholar 

  • Windler G, Tierney JE, DiNezio PN, Gibson K, Thunell R (2019) Shelf exposure influence on indo-pacific warm pool climate for the last 450,000 years. Earth Planet Sci Lett 516:66–76

    Google Scholar 

  • Yim SY, Wang B, Liu J, Wu Z (2014) A comparison of regional monsoon variability using monsoon indices. Clim Dyn 43(5–6):1423–1437

    Google Scholar 

  • Yin Q, Berger A (2012) Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Clim Dyn 38:709–724. https://doi.org/10.1007/s00382-011-1013-5

    Article  Google Scholar 

  • Zhao X, Cheng H, Sinha A, Zhang H, Baker JL, Chen S, Kong X, Wang Y, Edwards RL, Ning Y et al (2019) A high-resolution speleothem record of marine isotope stage 11 as a natural analog to holocene asian summer monsoon variations. Geophys Res Lett 46(16):9949–9957

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the funding support of CAPES to project Research Group on Climate Interaction (InteraC), and CNPq funding 303882/2020. PhD Student Carlos Gurjão and Dr, Flávio Justino designed the study, performed data processing, and plotting, and wrote large portions of the manuscript. Dr. Douglas Lindemann contributed with the model simulations. ERA5 is also acknowledged for providing the reanalysis data set.

Funding

This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant no. 303882/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Diego de Sousa Gurjão.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa Gurjão, C.D., Justino, F., Pires, G. et al. Southern hemisphere monsoonal system during superinterglacial stages: MIS5e, MIS11c and MIS31. Clim Dyn 61, 1867–1885 (2023). https://doi.org/10.1007/s00382-023-06660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06660-7

Keywords

Navigation