Skip to main content

Advertisement

Log in

Aerosol sensitivity simulations over East Asia in a convection-permitting climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 30 January 2024

This article has been updated

Abstract

The parameterization of deep convection is one of the primary sources of uncertainties in regional climate simulations. Due to computational constraints, long-term kilometer-scale simulations with explicit deep convection have been limited, especially over East Asia. We here conduct a pair of 10-years (2001–2010) reference simulations, one convection-parameterizing simulation at 12 km (0.11\(^{\circ }\)) resolution covering the CORDEX East Asia domain, and one 4.4-km (0.04\(^{\circ }\)) convection-permitting simulation over a subdomain. The two simulations are driven by the ERA5 reanalysis and the coarser-resolution simulation, respectively. The 4.4-km convection-permitting simulation noticeably improves the representation of the top-of-atmosphere outgoing longwave and shortwave radiation as well as precipitation intensity. In addition, sensitivity simulations are performed with perturbed sulfate and black carbon aerosols, considering the direct and semi-direct aerosol radiative effects. For the simulations with sulfate aerosol perturbations, the cloud radiative effect partly offsets the aerosol radiative effects. Decreasing sulfate aerosols leads to low-level warming, destabilizing the atmospheric stratification and thereby increasing mean precipitation and the frequency of wet days. Increasing sulfate aerosols leads to an approximately opposite response. For the simulations with black carbon aerosol perturbations, there is some near-surface warming for both increases and decreases in aerosol concentration. Also, there are significant changes in cloud cover, but changes in precipitation are comparatively weak. While for sulfate aerosol perturbations the response is approximately linear (in the sense that positive and negative perturbations yield approximately opposite effects), the response to black carbon aerosol perturbations is more complex and shows some nonlinearity, regardless of the treatment of deep convection in the simulations. We present a simple interpretation for this surprising result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data and code availability

The COSMO model in its GPU enabled version is used in this study, and the COSMO codes are available by requesting access to the model administrators (http://www.cosmo-model.org/content/consortium/default.htm). The model output data from the COSMO used for the figures in this work are available under https://doi.org/10.5281/zenodo.7157161 and https://doi.org/10.5281/zenodo.7170525. The daily precipitation gauge data over China can be accessed from China Meteorological data service centre at the China Meteorological Administration (http://data.cma.cn/en). All observational datasets are publicly available. CRU TS v4.03: https://crudata.uea.ac.uk/cru/data/hrg/; GPCC v2020: https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html; APHRO_MA: http://aphrodite.st.hirosaki-u.ac.jp/products.html; IMERG: https://gpm.nasa.gov/data; TRMM 3B42: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary; MSWEP: http://www.gloh2o.org/mswep/; GHCN CAMS: https://psl.noaa.gov/data/gridded/data.ghcncams.html; UDEL: http://climate.geog.udel.edu/~climate/html_pages/download.html; CERES EBAF: https://ceres.larc.nasa.gov/data/. The Python codes for all figures in this study are available upon request.

Change history

References

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245(4923):1227–1230

    Article  Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905

    Article  Google Scholar 

  • Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res 119(13):7889–7907

    Article  Google Scholar 

  • Barbaro E, de Arellano JVG, Ouwersloot HG, Schröter JS, Donovan DP, Krol MC (2014) Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system. J Geophys Res 119(10):5845–5863

    Article  Google Scholar 

  • Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, Van Dijk AI, McVicar TR, Adler RF (2019) Mswep v2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment. Bull Am Meteor Soc 100(3):473–500

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, et al (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 571–657

  • Che H, Zhang XY, Xia X, Goloub P, Holben B, Zhao H, Wang Y, Zhang XC, Wang H, Blarel L et al (2015) Ground-based aerosol climatology of china: aerosol optical depths from the china aerosol remote sensing network (carsnet) 2002–2013. Atmos Chem Phys 15(13):7619–7652

    Article  Google Scholar 

  • Dong B, Sutton RT, Highwood EJ, Wilcox LJ (2016) Preferred response of the east Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions. Clim Dyn 46(5–6):1733–1751

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Article  Google Scholar 

  • Fan Y, Van den Dool H (2008) A global monthly land surface air temperature analysis for 1948–present. J Geophys Res 113(D1)

  • Folini D, Wild M (2015) The effect of aerosols and sea surface temperature on china’s climate in the late twentieth century from ensembles of global climate simulations. J Geophys Res 120(6):2261–2279

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111(D6)

  • Fuhrer O, Osuna C, Lapillonne X, Gysi T, Cumming B, Bianco M, Arteaga A, Schulthess TC (2014) Towards a performance portable, architecture agnostic implementation strategy for weather and climate models. Supercomput Front Innov 1(1):45–62

    Google Scholar 

  • Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon JH, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim 25(19):6461–6476

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: Regional climate modeling revisited. J Geophys Res 104(D6):6335–6352

    Article  Google Scholar 

  • Guo L, Highwood E, Shaffrey L, Turner A (2013) The effect of regional changes in anthropogenic aerosols on rainfall of the east Asian summer monsoon. Atmos Chem Phys 13(3):1521–1534

    Article  Google Scholar 

  • Han JY, Hong SY (2018) Precipitation forecast experiments using the weather research and forecasting (wrf) model at gray-zone resolutions. Weather Forecast 33(6):1605–1616

    Article  Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the cru TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7(1):1–18

    Article  Google Scholar 

  • Haslinger K, Anders I, Hofstätter M (2013) Regional climate modelling over complex terrain: an evaluation study of cosmo-clm hindcast model runs for the greater alpine region. Clim Dyn 40(1–2):511–529

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(4):513–543

    Article  Google Scholar 

  • Haywood J, Ramaswamy V (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J Geophys Res 103(D6):6043–6058

    Article  Google Scholar 

  • Heise E, Ritter B, Schrodin R (2006) Operational implementation of the multilayer soil model. COSMO tech. rep., No. 9, COSMO

  • Hentgen L, Ban N, Kröner N, Leutwyler D, Schär C (2019) Clouds in convection-resolving climate simulations over Europe. J Geophys Res 124(7):3849–3870

    Article  Google Scholar 

  • Huang Y, Chameides WL, Dickinson RE (2007) Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. J Geophys Res 112(D3)

  • Huffman G, Bolvin D, Nelkin E, Adler R (2016) Trmm (tmpa) precipitation l3 1 day 0.25 degree\(\times \) 0.25 degree v7, edited by: Savtchenko, a., ges disc–goddard earth sciences data and information services center

  • Huffman G, Stocker E, Bolvin D, Nelkin E, Tan J (2019) Gpm imerg final precipitation l3 half hourly 0.1 degree x 0.1 degree v06. Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC)

  • Jakob C (2010) Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies. Bull Am Meteor Soc 91(7):869–876

    Article  Google Scholar 

  • Jiang Y, Liu X, Yang XQ, Wang M (2013) A numerical study of the effect of different aerosol types on east Asian summer clouds and precipitation. Atmos Environ 70:51–63

    Article  Google Scholar 

  • Kaufmann P (2008) Association of surface stations to NWP model grid points. COSMO Newslett 9(2)

  • Kinne S (2019) The macv2 aerosol climatology. Tellus B 71(1):1–21

    Article  Google Scholar 

  • Kinne S, Schulz M, Textor C, Guibert S, Balkanski Y, Bauer SE, Berntsen T, Berglen T, Boucher O, Chin M et al (2006) An aerocom initial assessment-optical properties in aerosol component modules of global models. Atmos Chem Phys 6(7):1815–1834

    Article  Google Scholar 

  • Koch D, Del Genio A (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10(16):7685–7696

    Article  Google Scholar 

  • Langhans W, Schmidli J, Schär C (2012) Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J Atmos Sci 69(7):2207–2228

    Article  Google Scholar 

  • Leutwyler D, Fuhrer O, Lapillonne X, Lüthi D, Schär C (2016) Towards European-scale convection-resolving climate simulations with gpus: a study with cosmo 4.19. Geosci Model Dev 9(9):3393–3412

    Article  Google Scholar 

  • Leutwyler D, Lüthi D, Ban N, Fuhrer O, Schär C (2017) Evaluation of the convection-resolving climate modeling approach on continental scales. J Geophys Res 122(10):5237–5258

    Article  Google Scholar 

  • Li Z, Lau WM, Ramanathan V, Wu G, Ding Y, Manoj M, Liu J, Qian Y, Li J, Zhou T et al (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929

    Article  Google Scholar 

  • Liu J, Rühland KM, Chen J, Xu Y, Chen S, Chen Q, Huang W, Xu Q, Chen F, Smol JP (2017) Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese loess plateau. Nat Clim Chang 7(3):190–194

    Article  Google Scholar 

  • Loeb NG, Doelling DR, Wang H, Su W, Nguyen C, Corbett JG, Liang L, Mitrescu C, Rose FG, Kato S (2018) Clouds and the earth’s radiant energy system (ceres) energy balanced and filled (ebaf) top-of-atmosphere (toa) edition-4.0 data product. J Clim 31(2):895–918

    Article  Google Scholar 

  • Ménégoz M, Gallée H, Jacobi H (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17(10):3921–3936

    Article  Google Scholar 

  • Mülmenstädt J, Nam C, Salzmann M, Kretzschmar J, L’Ecuyer TS, Lohmann U, Ma PL, Myhre G, Neubauer D, Stier P et al (2020) Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Sci Adv 6(22):eaaz6433

    Article  Google Scholar 

  • Nabat P, Somot S, Mallet M, Sevault F, Chiacchio M, Wild M (2015) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim Dyn 44(3–4):1127–1155

    Article  Google Scholar 

  • Norris JR, Wild M (2009) Trends in aerosol radiative effects over china and japan inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J Geophys Res 114(D10)

  • Palmer T (2014) Climate forecasting: build high-resolution global climate models. Nat News 515(7527):338

    Article  Google Scholar 

  • Pu Z, Xu L, Salomonson VV (2007) Modis/terra observed seasonal variations of snow cover over the Tibetan plateau. Geophys Res Lett 34(6)

  • Qian Y, Gong D, Fan J, Leung LR, Bennartz R, Chen D, Wang W (2009) Heavy pollution suppresses light rain in china: observations and modeling. J Geophys Res 114(D7)

  • Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  Google Scholar 

  • Reinhardt T, Seifert A (2006) A three-category ice scheme for lmk. Cosmo Newslett 6:115–120

    Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325

    Article  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: How do aerosols affect precipitation? Science 321(5894):1309–1313

    Article  Google Scholar 

  • Schär C, Fuhrer O, Arteaga A, Ban N, Charpilloz C, Di Girolamo S, Hentgen L, Hoefler T, Lapillonne X, Leutwyler D et al (2020) Kilometer-scale climate models: prospects and challenges. Bull Am Meteor Soc 101(5):E567–E587

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Rustemeier E, Ziese M (2020) Gpcc full data monthly product version 2020 at 0.25\(^{\circ }\): monthly land-surface precipitation from rain-gauges built on gts-based and historical data. Global Precipitation Climatology Centre at Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • Schultze M, Rockel B (2018) Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe. Clim Dyn 50(9):3331–3354

    Article  Google Scholar 

  • Sillmann J, Stjern CW, Myhre G, Samset BH, Hodnebrog Ø, Andrews T, Boucher O, Faluvegi G, Forster P, Kasoar MR et al (2019) Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. NPJ Clim Atmos Sci 2(1):1–7

    Article  Google Scholar 

  • Silva ND, Mailler S, Drobinski P (2020) Aerosol indirect effects on the temperature-precipitation scaling. Atmos Chem Phys 20(10):6207–6223

    Article  Google Scholar 

  • Sørland SL, Brogli R, Pothapakula PK, Russo E, Van de Walle J, Ahrens B, Anders I, Bucchignani E, Davin EL, Demory ME, et al (2021) Cosmo-clm regional climate simulations in the cordex framework: a review. Geoscientific Model Development Discussions pp 1–44

  • Steger C, Kotlarski S, Jonas T, Schär C (2013) Alpine snow cover in a changing climate: a regional climate model perspective. Clim Dyn 41(3–4):735–754

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer H, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model lm. Meteorol Atmos Phys 82(1):75–96

    Article  Google Scholar 

  • Streets DG, Yu C, Wu Y, Chin M, Zhao Z, Hayasaka T, Shi G (2008) Aerosol trends over china, 1980–2000. Atmos Res 88(2):174–182

    Article  Google Scholar 

  • Su T, Li Z, Li C, Li J, Han W, Shen C, Tan W, Wei J, Guo J (2020) The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol-planetary boundary layer (pbl) interactions. Atmos Chem Phys 20(6):3713–3724

    Article  Google Scholar 

  • Sweerts B, Pfenninger S, Yang S, Folini D, Van der Zwaan B, Wild M (2019) Estimation of losses in solar energy production from air pollution in china since 1960 using surface radiation data. Nat Energy 4(8):657–663

    Article  Google Scholar 

  • Tang T, Shindell D, Zhang Y, Voulgarakis A, Lamarque JF, Myhre G, Stjern CW, Faluvegi G, Samset BH (2020) Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature. Atmos Chem Phys 20(13):8251–8266

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-precipitation over the alps. J Geophys Res 120(9):3957–3972

    Article  Google Scholar 

  • Twomey S (1979) Introduction to the mathematics of inversion. Remote Sens Indirect Measur

  • Vergara-Temprado J, Ban N, Panosetti D, Schlemmer L, Schär C (2020) Climate models permit convection at much coarser resolutions than previously considered. J Clim 33(5):1915–1933

    Article  Google Scholar 

  • Wang Y, Ma PL, Jiang JH, Su H, Rasch PJ (2016) Toward reconciling the influence of atmospheric aerosols and greenhouse gases on light precipitation changes in eastern china. J Geophys Res 121(10):5878–5887

    Article  Google Scholar 

  • Westervelt D, Horowitz L, Naik V, Golaz JC, Mauzerall D (2015) Radiative forcing and climate response to projected 21st century aerosol decreases. Atmos Chem Phys 15(22):12,681-12,703

    Article  Google Scholar 

  • Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130(8):2088–2097

    Article  Google Scholar 

  • Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (ceres): an earth observing system experiment. Bull Am Meteor Soc 77(5):853–868

    Article  Google Scholar 

  • Wilks DS (1997) Resampling hypothesis tests for autocorrelated fields. J Clim 10(1):65–82

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1999) version 1.02. Center for Climatic Research, University of Delaware, Newark 1155

  • Yang Y, Wang H, Smith SJ, Zhang R, Lou S, Qian Y, Ma PL, Rasch PJ (2018) Recent intensification of winter haze in china linked to foreign emissions and meteorology. Sci Rep 8(1):1–10

    Google Scholar 

  • Yasutomi N, Hamada A, Yatagai A (2011) Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Glob Environ Res 15(2):165–172

    Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) Aphrodite: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteor Soc 93(9):1401–1415

    Article  Google Scholar 

  • Yu S, Li P, Wang L, Wang P, Wang S, Chang S, Liu W, Alapaty K (2016) Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in china. Proc Natl Acad Sci 113(16):E2209–E2210

    Article  Google Scholar 

  • Zeman C, Wedi NP, Dueben PD, Ban N, Schär C (2021) Model intercomparison of cosmo 5.0 and ifs 45r1 at kilometer-scale grid spacing. Geosci Model Dev 14(7):4617–4639

    Article  Google Scholar 

  • Zhuang B, Li S, Wang T, Liu J, Chen H, Chen P, Li M, Xie M (2018) Interaction between the black carbon aerosol warming effect and east Asian monsoon using regcm4. J Clim 31(22):9367–9388

    Article  Google Scholar 

  • Zubler E, Lohmann U, Lüthi D, Schär C (2011) Intercomparison of aerosol climatologies for use in a regional climate model over Europe. Geophys Res Lett 38(15)

Download references

Acknowledgements

Funding for this study was provided by the National Natural Science Foundation of China (Grants 41905060, 42130610) and the China Scholarship Council. The simulations have been performed at the Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland. The simulation data and related codes are available upon request. We acknowledge PRACE for awarding computing resources on Piz Daint at CSCS and the Center for Climate Systems Modeling (C2SM) for their support. We also acknowledge the CMA, NOAA, NASA UCAR, UDEL, DWD, and Princeton University for providing the observational datasets. Finally, we would like to thank two anonymous reviewers for their constructive comments.

Funding

The work is supported by the National Natural Science Foundation of China (Grants 41905060, 42130610) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

SL and CS designed the experiments. SL conducted the COSMO simulations with technical support from SLS and analyzed the model output and observations. SLS, MW, and CS were strongly involved in the discussion of the results. SL wrote the main manuscript text, and SLS, MW, and CS reviewed the manuscript.

Corresponding author

Correspondence to Shuping Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article figure 8 was wrongly appeared. it has been corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 29435 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sørland, S.L., Wild, M. et al. Aerosol sensitivity simulations over East Asia in a convection-permitting climate model. Clim Dyn 61, 861–881 (2023). https://doi.org/10.1007/s00382-022-06620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06620-7

Keywords

Navigation