Skip to main content

Advertisement

Log in

Joint effect of the North Pacific Victoria mode and the tropical Pacific on El Niño diversity

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates possible mechanisms under what circumstances the North Pacific Victoria mode (VM) is more likely to trigger the eastern Pacific (EP) or central Pacific (CP) El Niño event. Results indicate that while positive VM events can provide the initiates to the onset of El Niño events via forcing initial warming of sea surface temperature (SST) anomalies to occur in the central equatorial Pacific from springtime to summer, the changes in background conditions of the equatorial Pacific at the same period also are crucial contributors to the development of VM-EP or VM-CP El Niño events. That is when we predict the spatial patterns of El Niño events in advance, the extratropical variabilities and changes in the background conditions of the tropical Pacific should be both taken into consideration, rather than considered individually. For VM-EP El Niño cases, the significantly negative SST anomalies from the eastern tropical Pacific experience a fast transition into positive. These SST anomalies are usually accompanied by sign reversal of zonal wind anomalies near the dateline, finally together supplying favorable conditions for the eastward propagation of the initial warming anomalous SST generated by VM event. For VM-CP El Niño cases, there are also negative SST anomalies in the eastern equatorial Pacific, however, they can linger much longer than the former case and transit relatively slow to positive SST anomalies, which together along with the muted anomalous westerlies around the dateline suppress the eastward propagation of the warm SST anomalies generated by VM events. The changes of subsurface water are further in accordant to the results in the sea surface. Two simple statistical models for EP and CP El Niño prediction are derived depending on evolutionary features in both north and tropical Pacific, showing high prediction skills by 2-season in advance. These findings may provide useful insights for understanding the predictability of El Niño diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The HadISST data set was obtained from the UK Met Office Hadley Centre (available online at http://www.metoffice.gov.uk/hadobs/hadsst3/). The atmospheric reanalysis data sets were obtained from NCEP/NCAR (available online at https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html). The circulation, subsurface ocean temperature, and surface wind stress data are from the Simple Ocean Data Assimilation system, version 2.2.4 (available online at ftp://ds1.iap.ac.cn/ftp/cheng/CZ16_v3_IAP_Temperature_gridded_1month_netcdf and http://iridl.ldeo.columbia.edu/SOURCES/.CARTONGIESE/.SODA/.v2p2p4/).

References

  • Alexander MA et al (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23:2885–2901

    Google Scholar 

  • Amaya DJ, Kosaka Y, Zhou W, Zhang Y, Xie SP, Miller AJ (2019) The North Pacific pacemaker effect on historical ENSO and its mechanisms. J Clim 32(22):7643–7661

    Google Scholar 

  • Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res 108(D23):4732. https://doi.org/10.1029/2003JD003805

    Article  Google Scholar 

  • Anderson BT, Perez RC, Karspeck A (2013) Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys Res Lett 40:1212–1216

    Google Scholar 

  • Ashok K, Yamagata T (2009) Climate change: the El Nino with a difference. Nature 461:481–484. https://doi.org/10.1038/461481a

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Google Scholar 

  • Austin PC, Tu JV (2004) Bootstrap methods for developing predictive models. Am Stat 58:131–137

    Google Scholar 

  • Ballester J, Rodríguez-Arias MÀ, Rodó X (2011) A new extratropical tracer describing the role of the western Pacific in the onset of El Niño: Implications for ENSO understanding and forecasting. J Clim 24:1425–1437

    Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Am Meteorol Soc 93:631–651

    Google Scholar 

  • Behringer MJ, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: the ocean data assimilation system. Mon Wea Rev 126:1013–1021

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from equatorial Pacific. Mon Weather Rev 97:163–172

    Google Scholar 

  • Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183

    Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017

    Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature 443:324–328

    Google Scholar 

  • Chen D, Lian T, Fu C, Cane MA, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345

    Google Scholar 

  • Chen M, Yu JY, Wang X, Chen S (2021) Distinct onset mechanisms of two subtypes of CP El Niño and their changes in future warming. Geophy Res Lett 48(14):e2021GL093707

    Google Scholar 

  • Cheng L, Trenberth K, Fasullo J, Boyer T, Abraham J, Zhu J (2017) Improved estimates of ocean heat content from 1960 to 2015. Sci Adv 3:e1601545. https://doi.org/10.1126/sciadv.1601545

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158

    Google Scholar 

  • Clarke AJ (2014) El Niño physics and El Niño predictability. Ann Rev Mar Sci 6:79–99

    Google Scholar 

  • Di Lorenzo E et al (2008) North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35(8):L08607

    Google Scholar 

  • Di Lorenzo E et al (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nature Geosci 3:762–765. https://doi.org/10.1038/ngeo984

    Article  Google Scholar 

  • Ding R, Li J, Tseng YH, Sun C, Guo Y (2015a) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res 120:27–45

    Google Scholar 

  • Ding R, Li J, Tseng Y-H, Ruan C (2015b) Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J Geophys Res 120:964–979

    Google Scholar 

  • Eyring V et al (2016) Overview of the coupled model intercomparison project phase 6 700 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1058

    Google Scholar 

  • Fosu B, He J, Wang S (2020) The influence of wintertime SST variability in the Western North Pacific on ENSO diversity. Clim Dyn 54:3641–3654

    Google Scholar 

  • Freund MB et al (2019) Higher frequency of central Pacific El Niño events in recent decades relative to past centuries. Nat Geosci 12(6):450–455

    Google Scholar 

  • Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398

    Google Scholar 

  • Ham YG, Kug JS, Park JY (2013) Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys Res Lett 40:4012–4017

    Google Scholar 

  • Hu S, Fedorov AV (2018) Cross-equatorial winds control El Niño diversity and change. Nat Clim Change 8:798–802

    Google Scholar 

  • Huang B, Yan X, Hui W, Wang W, Kumar A (2012) Mixed layer heat budget of the el nio in ncep climate forecast system. Clim dyn 39(1–2):365–381

    Google Scholar 

  • Jia F, Cai W, Gan B, Wu L, Lorenzo ED (2021) Enhanced North Pacific impact on El Niño/Southern oscillation under greenhouse warming. Nat Clim Chang 11:840–847. https://doi.org/10.1038/s41558-021-01139-x

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorolo Soc 77:437–472

    Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Google Scholar 

  • Larson SM, Kirtman BP (2014) The Pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J Clim 27:7018–7032

    Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett. https://doi.org/10.1029/2010GL044007

    Article  Google Scholar 

  • Ma T, Chen W (2021) Climate variability of the East Asian winter monsoon and associated extratropical–tropical interaction: a review. Ann N Y Acad Sci 1504(1):44–62

    Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814837

    Google Scholar 

  • Mantua N, Hare S, Zhang Y, Wallace J, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283:950–954

    Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26(19):2961–2964

    Google Scholar 

  • McPhaden MJ, Bahr F, Penhoat YD, Firing E, Hayes SP, Niiler PP, Richardson PL, Toole JM (1992) The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J Geophys Res 97(14):289–14303. https://doi.org/10.1029/92JC01197

    Article  Google Scholar 

  • Pegion KV, Selman C (2017) Extratropical precursors of the El Niño–southern oscillation. Climate Extremes: Patt Mechan 226:301

    Google Scholar 

  • Rayner N et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett. https://doi.org/10.1029/2010GL046031

    Article  Google Scholar 

  • Rogers JC (1981) The North Pacific oscillation. J Climatol 1:39–57

    Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett. https://doi.org/10.1029/2011GL047364

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Google Scholar 

  • Trenberth KE et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324

    Google Scholar 

  • Tseng YH et al (2017) An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Clim Dyn 48:2025–2044

    Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Google Scholar 

  • Walker GT, Bliss EW (1932) World Weather V. Memo R Meteorol Soc 4:53–84

    Google Scholar 

  • Wang B et al (2019a) Historical change of El Niño properties sheds light on future changes of extreme El Niño. PNAS 116:22512–22517

    Google Scholar 

  • Wang X, Guan C, Huang RX, Tan W (2019b) The roles of tropical and subtropical wind stress anomalies in the El Niño Modoki onset. Clim Dyn 52(11):6585–6597

    Google Scholar 

  • Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350

    Google Scholar 

  • Xu K et al (2020) Attenuation of central Pacific El Niño amplitude by North Pacific sea surface temperature anomalies. J Clim 33:6673–6688

    Google Scholar 

  • Yeh SW et al (2009) El Niño in a changing climate. Nature 461:511–514

    Google Scholar 

  • Yeh SW, Wang X, Wang C, Dewitte B (2015) On the relationship between the North Pacific climate variability and the central Pacific El Niño. J Clim 28(2):663–677

    Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720

    Google Scholar 

  • Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Google Scholar 

  • Zhang Y et al (2021) Pacific meridional modes without equatorial Pacific influence. J Clim 34(13):285–5301

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (41975070) and the National Natural Science Foundation of China (41975076).

Funding

The authors wish to thank the editor and two anonymous reviewers for helpful comments and suggestions. This research was jointly supported by the National Natural Science Foundation of China (41975070 and 41975076).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript war written by LS. QRD and JSH commented on initial versions of the manuscript. All other authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruiqiang Ding.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Ding, R., Hu, S. et al. Joint effect of the North Pacific Victoria mode and the tropical Pacific on El Niño diversity. Clim Dyn 61, 151–168 (2023). https://doi.org/10.1007/s00382-022-06550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06550-4

Keywords

Navigation