Skip to main content

Towards Ensemble-Based Kilometer-Scale Climate Simulations over the Third Pole Region

Abstract

The Tibetan Plateau and its surrounding mountains have an average elevation of 4,400 m and a glaciated area of \(\sim \)100,000 \(\hbox {km}^{2}\) giving it the name “Third Pole (TP) region”. The TP is the headwater of many major rivers in Asia that provide fresh water to hundreds of millions of people. Climate change is altering the energy and water cycle of the TP at a record pace but the future of this region is highly uncertain due to major challenges in simulating weather and climate processes in this complex area. The Convection-Permitting Third Pole (CPTP) project is a Coordinated Regional Downscaling Experiment (CORDEX) Flagship Pilot Study (FPS) that aims to revolutionize our understanding of climate change impacts on the TP through ensemble-based, kilometer-scale climate modeling. Here we present the experimental design and first results from multi-model, multi-physics ensemble simulations of three case studies. The five participating modeling systems show high performance across a range of meteorological situations and are close to having ”observational quality” in simulating precipitation and near-surface temperature. This is partly due to the large differences between observational datasets in this region, which are the leading source of uncertainty in model evaluations. However, a systematic cold bias above 2000 m exists in most modeling systems. Model physics sensitivity tests performed with the Weather Research and Forecasting (WRF) model show that planetary boundary layer (PBL) physics and microphysics contribute equally to model uncertainties. Additionally, larger domains result in better model performance. We conclude by describing high-priority research needs and the next steps in the CPTP project.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. A list can be found here: https://cordex.org/experiment-guidelines/flagship-pilot-studies/.

References

  • Asian Precipitaion Experiment (AsiaPEX). http://iceds.cc.kagawa-u.ac.jp/asiapex/#:~:text=We%20just%20launched%20Asian%20Precipitation,Scientific%20Research%20and%20Prediction%20Initiative. Accessed: 2022-04-10 (2022)

  • Bae SY, Hong S-Y, Tao W-K (2019) Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia-Pacific J Atmosp Sci 55(2):233–245

    Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905

    Google Scholar 

  • Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119:7889–7907. https://doi.org/10.1002/2014JD021478

    Article  Google Scholar 

  • Ban N, Schmidli J, Schar C (2015) Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res Lett 42(4):1165–1172. https://doi.org/10.1002/2014GL062588

    Article  Google Scholar 

  • Ban N, Caillaud C, Coppola E, Pichelli E, Sobolowski S, Adinolfi M, Ahrens B, Alias A, Anders I, Bastin S et al (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part i: evaluation of precipitation. Clim Dyn 57:1–28. https://doi.org/10.1007/s00382-021-05708-w

    Article  Google Scholar 

  • Barlage M, Chen F, Rasmussen R, Zhang Z, Miguez-Macho G (2021) The importance of scale-dependent groundwater processes in land-atmosphere interactions over the central United States. Geophysical Research Letters 48(5):2020–092171

    Google Scholar 

  • Bartsotas N, Anagnostou E, Nikolopoulos E, Kallos G (2018) Investigating satellite precipitation uncertainty over complex terrain. J Geophys Res 123(10):5346–5359

    Google Scholar 

  • Bechtold P, Chaboureau J-P, Beljaars A, Betts A, Köhler M, Miller M, Redelsperger J-L (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J R Meteorol Soc 130(604):3119–3137

    Google Scholar 

  • Beck HE, Wood EF, McVicar TR, Zambrano-Bigiarini M, Alvarez-Garreton C, Baez-Villanueva OM, Sheffield J, Karger DN (2020) Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J Clim 33(4):1299–1315

    Google Scholar 

  • Belušić A, Prtenjak MT, Güttler I, Ban N, Leutwyler D, Schär C (2018) Near-surface wind variability over the broader adriatic region: insights from an ensemble of regional climate models. Clim Dyn 50(11):4455–4480. https://doi.org/10.1007/s00382-017-3885-5

    Article  Google Scholar 

  • Blažica V, Žagar N, Strajnar B, Cedilnik J (2013) Rotational and divergent kinetic energy in the mesoscale model aladin. Tellus A 65(1):18918

    Google Scholar 

  • Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117(8):1872–1890

    Google Scholar 

  • T.L., Y., Chan D., T., Piao, S (in press) Reflections and future strategies for the Third Pole Environment. Nature Reviews Earth and Environment

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Google Scholar 

  • Clark P, Roberts N, Lean H, Ballard SP, Charlton-Perez C (2016) Convection-permitting models: a step-change in rainfall forecasting. Meteorol Appl 23(2):165–181

    Google Scholar 

  • Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, Ban N, Bastin S, Belda M, Belusic D et al (2020) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over europe and the mediterranean. Clim Dyn 55:3–34. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  • Coppola E, Stocchi P, Pichelli E, Torres Alavez JA, Glazer R, Giuliani G, Di Sante F, Nogherotto R, Giorgi F (2021) Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains. Geosci Model Dev 14(12):7705–7723

    Google Scholar 

  • Crespi A, Lussana C, Brunetti M, Dobler A, Maugeri M, Tveito OE (2019) High-resolution monthly precipitation climatologies over Norway (1981–2010): joining numerical model data sets and in situ observations. Int J Climatol 39(4):2057–2070

    Google Scholar 

  • Curio J, Schiemannm R, Hodges KI, Turner AG (2019) Climatology of tibetan plateau vortices in reanalysis data and a high-resolution global climate model. J Clim 32(6):1933–1950

    Google Scholar 

  • Dai Y, Chen D, Yao T, Wang L (2020) Large lakes over the Tibetan Plateau may boost snow downwind: implications for snow disaster. Sci Bull 65(20):1713–1717

    Google Scholar 

  • Denis B, Cote J, Laprise R (2002) Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (dct). Mon Weather Rev 130(7):1812–1829

    Google Scholar 

  • Dickinson RE (1993) Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note TH-387+ STR

  • Doms G, Schättler U (2002) A description of the nonhydrostatic regional model LM. Part I: Dynamics and Numerics, Deutscher Wetterdienst, Offenbach 520

  • Duda MG, Fowler LD, Skamarock WC, Roesch C, Jacobsen D, Ringler TD (2019) MPAS-Atmosphere Model User’s Guide Version 7.0. Technical report, NCAR, Boulder, Colo

  • Dunn RJ, Willett KM, Parker DE, Mitchell L (2016) Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci Instrumentation Methods Data Syst 5(2):473–491

    Google Scholar 

  • Eaton B (2011) User’s guide to the community atmosphere model CAM-5.1. 1. NCAR

  • Ek M, Mitchell K, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley J (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22)

  • Feng X, Liu C, Rasmussen R, Fan G (2014) A 10-yr climatology of tibetan plateau vortices with ncep climate forecast system reanalysis. J Appl Meteorol Climatol 53(1):34–46

    Google Scholar 

  • Fuhrer C Oliver andOsuna, Lapillonne X, Gysi T, Cumming B, Bianco M, Arteaga A, Schulthess T (2014) Towards a performance portable, architecture agnostic implementation strategy for weather and climate models. Supercomputing Frontiers and Innovations 1:45–62

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A et al (2015) The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data 2(1):1–21

    Google Scholar 

  • Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annual review of environment and resources 40:467–490

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research 52:7–29

    Google Scholar 

  • Glotfelty T, Alapaty K, He J, Hawbecker P, Song X, Zhang G (2019) The Weather Research and Forecasting Model with Aerosol-Cloud Interactions (WRF-ACI): Development, Evaluation, and Initial Application. Mon Weather Rev 147(5):1491–1511

    Google Scholar 

  • Grell GA, Freitas SR (2014) A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmosp Chem Phys 14(10):5233–5250

    Google Scholar 

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129(3):357–377

    Google Scholar 

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G et al (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9(11):4087–4095

    Google Scholar 

  • Hasson S, Saeed F, Böhner J, Schleussner C-F (2019) Water availability in Pakistan from Hindukush-Karakoram-Himalayan watersheds at 1.5 C and 2 C Paris Agreement targets. Adv Water Resources 131:103365

    Google Scholar 

  • Hasson S, Böhner J, Chishtie F (2016) Low Fidelity of Present-day Climate Modelling experiments and future climatic uncertainty over Himalayan watersheds of Indus basin. Clim, Dyn

  • Heise E, Ritter B, Schrodin R, Wetterdienst D (2006) Operational Implementation of the Multilayer Soil Model. Citeseer, ???

  • Hentgen L, Ban N, Kroner N, Leutwyler D, Schar C (2019) Clouds in convection-resolving climate simulations over europe. J Geophys Res 124(7):3849–3870. https://doi.org/10.1029/2018JD030150

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Google Scholar 

  • Holtslag A, De Bruijn E, Pan H (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575

    Google Scholar 

  • Hong S-Y (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society 136(651):1481–1496

    Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Google Scholar 

  • Huffman G (2019) IMERG V06 quality index. https://gpm.nasa.gov/sites/default/files/2020-02/IMERGV06_QI_0.pdf

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo S-H (2015) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 4:26

    Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res 113(D13)

  • Ikeda K, Rasmussen R, Liu C, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Miller K, Arsenault K, Grubišić V, Thompson G, Guttman E (2010) Simulation of seasonal snowfall over colorado. Atmosp Res 97(4):462–477. https://doi.org/10.1016/j.atmosres.2010.04.010

    Article  Google Scholar 

  • Ikeda K, Rasmussen R, Liu C, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Miller K et al (2010) Simulation of seasonal snowfall over Colorado. Atmosp Res 97(4):462–477

    Google Scholar 

  • Ikeda K, Rasmussen R, Liu C, Newman A, Chen F, Barlage M, Gutmann E, Dudhia J, Dai A, Luce C et al (2021) Snowfall and snowpack in the Western US as captured by convection permitting climate simulations: current climate and pseudo global warming future climate. Clim Dyn 57(7):2191–2215

    Google Scholar 

  • Janjić ZI (1994) The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly weather review 122(5):927–945

    Google Scholar 

  • Ju L, Ringler T, Gunzburger M (2011) Voronoi tessellations and their application to climate and global modeling. In: Numerical Techniques for Global Atmospheric Models, pp. 313–342. Springer, ???

  • Karki R, Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2017) Quantifying the added value of high resolution climate models: a systematic comparison of WRF simulations for complex Himalayan terrain. Earth Syst Dyn 8:507–528

    Google Scholar 

  • Karki R, Hasson S, Gerlitz L, Talchabhadel R, Schenk E, Schickhoff U, Scholten T, Böhner J (2018) Wrf-based simulation of an extreme precipitation event over the central himalayas: atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmosp Res 214:21–35

    Google Scholar 

  • Karki R, Hasson S.u, Schickhoff U, Scholten T, Böhner J, Gerlitz L (2020) Near surface air temperature lapse rates over complex terrain: a WRF based analysis of controlling factors and processes for the central Himalayas. Clim Dyn 54(1):329–349

    Google Scholar 

  • Kendon EJ, Fosser G, Murphy J, Chan S, Clark R, Harris G, Lock A, Lowe J, Martin G, Pirret J, Roberts N, Sanderson M, Tucker S (2019) UKCP Convection-permitting model projections: Science report. UK Met Office

  • Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of Rainfall in a Very High-Resolution Regional Climate Model. J Clim 25(17):5791–5806. https://doi.org/10.1175/JCLI-D-11-00562.1

    Article  Google Scholar 

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4:570–576. https://doi.org/10.1038/nclimate2258

    Article  Google Scholar 

  • Kendon EJ, Stratton RA, Tucker S, Marsham JH, Berthou S, Rowell DP, Senior CA (2019) Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat Commun 10:1794. https://doi.org/10.1038/s41467-019-09776-9

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Briegleb B (1996) Description of the NCAR community climate model (CCM3). Technical Note. Technical report, National Center for Atmospheric Research, Boulder, CO (United States

  • Klemp JB (2011) A terrain-following coordinate with smoothed coordinate surfaces. Mon Weather Rev 139(7):2163–2169

    Google Scholar 

  • Klocke D, Brueck M, Hohenegger C, Stevens B (2017) Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic. Nat Geosci 10(12):891–896

    Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schä C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev Discuss 7:217–293. https://doi.org/10.5194/gmdd-7-217-2014

    Article  Google Scholar 

  • Kukilies J, Prein AF, Curio J, Deliang C, Evaluating kilometer-scale multi-model and multi-physics ensemble simulations of a mesoscale convective system in the lee of the Tibetan Plateau. J Clim (In Review)

  • Kukulies J, Chen D, Curio J (2021) The role of mesoscale convective systems in precipitation in the tibetan plateau region. J Geophys Res 126(23):2021–035279

    Google Scholar 

  • Li P, Furtado K, Zhou T, Chen H, Li J (2021) Convection-permitting modelling improves simulated precipitation over the central and eastern tibetan plateau. Q J R Meteorol Soc 147(734):341–362

    Google Scholar 

  • Lim K-SS, Hong S-Y (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138(5):1587–1612

    Google Scholar 

  • Lin C, Chen D, Yang K, Ou T (2018) Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau. Climate dynamics 51(9):3195–3207

  • Liu C, Ikeda K, Rasmussen R, Barlage M, Newman AJ, Prein AF, Chen F, Chen L, Clark M, Dai A, Dudhia J, Eidhammer T, Gochis D, Gutmann E, Kurkute S, Li Y, Thompson G, Yates D (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn 49(1):71–95. https://doi.org/10.1007/s00382-016-3327-9

    Article  Google Scholar 

  • Lu X, Tang G, Wang X, Liu Y, Jia L, Xie G, Li S, Zhang Y (2019) Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. J Hydrol 575:1239–1252

    Google Scholar 

  • Lundquist J, Hughes M, Gutmann E, Kapnick S (2019) Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull Am Meteorol Soc 100(12):2473–2490

    Google Scholar 

  • Lussana C, Tveito OE, Dobler A, Tunheim K (2019) seNorge_2018, daily precipitation, and temperature datasets over Norway. Earth System Science Data 11(4):1531–1551

    Google Scholar 

  • Lüthi S, Ban N, Kotlarski S, Steger CR, Jonas T, Schär C (2019) Projections of alpine snow-cover in a high-resolution climate simulation. Atmosphere 10(8):463. https://doi.org/10.3390/atmos10080463

    Article  Google Scholar 

  • Matte D, Laprise R, Thériault JM, Lucas-Picher P (2017) Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Clim Dyn 49(1):563–574

    Google Scholar 

  • Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the tibetan plateau as resolved by the high asia reanalysis. J Clim 27(5):1910–1927. https://doi.org/10.1175/JCLI-D-13-00282.1

    Article  Google Scholar 

  • Mesinger F (1993) Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res. Activ. Atmos. Oceanic Mod

  • Mironov DV (2005) Parameterization of lakes in numerical weather prediction. Part 1: Description of a lake model. German Weather Service, Offenbach am Main, Germany

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682

    Google Scholar 

  • Mooney P, Broderick C, Bruyère C, Mulligan F, Prein A (2017) Clustering of observed diurnal cycles of precipitation over the United States for evaluation of a WRF multiphysics regional climate ensemble. Journal of Climate 30(22):9267–9286

    Google Scholar 

  • Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon Weather Rev 137(3):991–1007

    Google Scholar 

  • Nakanishi M, Niino H (2004) An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Boundary-layer Meteorol 112(1):1–31

    Google Scholar 

  • Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn Ser II 87(5):895–912

    Google Scholar 

  • Nastrom G, Gage KS, Jasperson W (1984) Kinetic energy spectrum of large-and mesoscale atmospheric processes. Nature 310(5972):36–38

    Google Scholar 

  • Niu G-Y, Yang Z-L, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres 116(D12)

  • Olson JB, Kenyon JS, Angevine W, Brown JM, Pagowski M, Sušelj K, et al (2019) A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW

  • Orr A, Bechtold P, Scinocca J, Ern M, Janiskova M (2010) Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J Clim 23(22):5905–5926

    Google Scholar 

  • Orr A, Listowski C, Couttet M, Collier E, Immerzeel W, Deb P, Bannister D (2017) Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. J Geophys Res 122(12):6298–6318

    Google Scholar 

  • Ouyang L, Lu H, Yang K, Leung LR, Wang Y, Zhao L, Zhou X, Chen Y, Jiang Y, Yao X (2021) Characterizing Uncertainties in Ground “Truth” of Precipitation Over Complex Terrain Through High-Resolution Numerical Modeling. Geophys Res Lett 48(10):2020–091950

  • Pal JS, Small EE, Eltahir EA (2000) Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmosp 105(D24):29579–29594

    Google Scholar 

  • Park S-H, Klemp JB, Skamarock WC (2014) A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation. Mon Weather Rev 142(10):3614–3634

    Google Scholar 

  • Pham TV, Steger C, Rockel B, Keuler K, Kirchner I, Mertens M, Rieger D, Zängl G, Früh B (2021) ICON in Climate Limited-area Mode (ICON release version 2.6. 1): a new regional climate model. Geoscientific Model Development 14(2):985–1005

    Google Scholar 

  • Pichelli E, Coppola E, Sobolowski S, Ban N, Giorgi F, Stocchi P, Alias A, Belušić D, Berthou S, Caillaud C et al (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Clim Dyn 56(11):3581–3602

    Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmosp Sci 42(3):217–229

    Google Scholar 

  • Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Weyer N (2019) The ocean and cryosphere in a changing climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate

  • Powers JG, Klemp JB, Skamarock WC, Davis CA, Dudhia J, Gill DO, Coen JL, Gochis DJ, Ahmadov R, Peckham SE et al (2017) The weather research and forecasting model: overview, system efforts, and future directions. Bull Am Meteorol Soc 98(8):1717–1737

    Google Scholar 

  • Prein AF, Gobiet A (2017) Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. International Journal of Climatology 37(1):305–327

    Google Scholar 

  • Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Climate Dyn 41(9–10):2655–2677. https://doi.org/10.1007/s00382-013-1744-6

    Article  Google Scholar 

  • Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  • Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  • Prein A, Rasmussen R, Wang D, Giangrande S (2021) Sensitivity of organized convective storms to model grid spacing in current and future climates. Philosophical Trans R Soc A 379(2195):20190546

    Google Scholar 

  • Prein A, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, Van Meijgaard E, Déqué M, Nikulin G, et al (2016) Precipitation in the EURO-CORDEX 0.11deg and 0.44deg simulations: high resolution, high benefits? Climate dynamics 46(1):383–412

  • Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsletter 1:89–97

    Google Scholar 

  • Rasmussen R, Liu C, Ikeda K, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Yu W et al (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. Journal of Climate 24(12):3015–3048

    Google Scholar 

  • Rasmussen R, Liu C, Ikeda K, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Yu W, Miller K, Arsenault K, Grubišić V, Thompson G, Gutmann E (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over colorado: a process study of current and warmer climate. J Clim 24:3015–3048. https://doi.org/10.1175/2010JCLI3985.1

    Article  Google Scholar 

  • Rasmussen R, Ikeda K, Liu C, Gochis D, Clark M, Dai A, Gutmann E, Dudhia J, Chen F, Barlage M et al (2014) Climate change impacts on the water balance of the Colorado headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15(3):1091–1116

    Google Scholar 

  • Rasmussen R, Ikeda K, Liu C, Gochis D, Clark M, Dai A, Gutmann E, Dudhia J, Chen F, Barlage M, Yates D, Zhang G (2014) Climate change impacts on the water balance of the colorado headwaters: High-resolution regional climate model simulations. Journal of Hydrometeorology 15(3):1091–1116. https://doi.org/10.1175/JHM-D-13-0118.1

    Article  Google Scholar 

  • Regional climate hindcast simulations within EURO-CORDEX (2015) evaluation of a WRF multi-physics ensemble, author=Katragkou, Eleni and García-Díez, Markel and Vautard, Robert and Sobolowski, S and Zanis, Prodromos and Alexandri, G and Cardoso, Rita M and Colette, Augustin and Fernandez, J and Gobiet. A and others. Geoscientific model development 8(3):603–618

  • Ringler TD, Thuburn J, Klemp JB, Skamarock WC (2010) A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J Comput Phys 229(9):3065–3090

    Google Scholar 

  • Ringler T, Petersen M, Higdon RL, Jacobsen D, Jones PW, Maltrud M (2013) A multi-resolution approach to global ocean modeling. Ocean Modell 69:211–232

    Google Scholar 

  • Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325

    Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17(4):347–348

    Google Scholar 

  • Rodell M, Houser P, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Google Scholar 

  • Rohde R, Muller R, Jacobsen R, Perlmutter S, Rosenfeld A, Wurtele J, Curry J, Wickham C, Mosher S (2013) Berkeley Earth temperature averaging process. Geoinformatics & Geostatistics 1(2):1–13

    Google Scholar 

  • Rowell DP (2006) A demonstration of the uncertainty in projections of UK climate change resulting from regional model formulation. Climatic Change 79(3):243–257

    Google Scholar 

  • Ruiz-Arias JA, Dudhia J, Santos-Alamillos FJ, Pozo-Vázquez D (2013) Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model. J Geophys Res 118(17):9901–9913

    Google Scholar 

  • Sanjay J, Krishnan R, Shrestha AB, Rajbhandari R, Ren G-Y (2017) Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv Clim Change Res 8(3):185–198

    Google Scholar 

  • Schulz J-P, Vogel G, Becker C, Kothe S, Ahrens B (2016) Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil. Meteor. Z. 25(5):607–620. https://doi.org/10.1127/metz/2016/0537

  • Seifert A (2008) On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J Atmosp Sci 65(11):3608–3619

    Google Scholar 

  • Sharma S, Chen Y, Zhou X, Yang K, Li X, Niu X, Hu X, Khadka N (2020) Evaluation of GPM-Era satellite precipitation products on the southern slopes of the Central Himalayas against rain gauge data. Remote Sens 12(11):1836

    Google Scholar 

  • Shin HH, Hong S-Y (2015) Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Monthly Weather Review 143(1):250–271

    Google Scholar 

  • Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199(1–2):183–206

    Google Scholar 

  • Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132(12):3019–3032

    Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485

    Google Scholar 

  • Skamarock WC, Klemp JB, Duda MG, Fowler LD, Park S-H, Ringler TD (2012) A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Review 140(9):3090–3105

    Google Scholar 

  • Skamarock WC, Park S-H, Klemp JB, Snyder C (2014) Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J Atmosp Sci 71(11):4369–4381

    Google Scholar 

  • Skamarock WC, Duda MG, Ha S, Park S-H (2018) Limited-area atmospheric modeling using an unstructured mesh. Mon Weather Rev 146(10):3445–3460

    Google Scholar 

  • Sugimoto S, Ueno K, Fujinami H, Nasuno T, Sato T, Takahashi HG (2021) Cloud-resolving-model simulations of nocturnal precipitation over the Himalayan slopes and foothills. J Hydrometeorol 22(12):3171–3188

    Google Scholar 

  • Sugimoto S, Ueno K (2010) Formation of mesoscale convective systems over the eastern tibetan plateau affected by plateau-scale heating contrasts. Journal of Geophysical Research: Atmospheres 115(D16)

  • Tang G, Clark MP, Papalexiou SM, Ma Z, Hong Y (2020) Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote sensing of environment 240:111697

    Google Scholar 

  • Tastula E-M, Galperin B, Dudhia J, LeMone MA, Sukoriansky S, Vihma T (2015) Methodical assessment of the differences between the QNSE and MYJ PBL schemes for stable conditions. Q J R Meteorol Soc 141(691):2077–2089

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Google Scholar 

  • Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. Journal of Geophysical Research: Atmospheres 102(D20):23895–23915

    Google Scholar 

  • Thompson G, Rasmussen RM, Manning K (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev 132(2):519–542

    Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Google Scholar 

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-precipitation over the alps. Journal of Geophysical Research: Atmospheres 120(9), 3957–3972. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD022781. 10.1002/2014JD022781

  • Wang X, Chen D, Pang G, Anwar SA, Ou T, Yang M (2021) Effects of cumulus parameterization and land-surface hydrology schemes on Tibetan Plateau climate simulation during the wet season: Insights from the RegCM4 model. Climate Dynamics 57(7):1853–1879

    Google Scholar 

  • Xie P, Chen M, Shi W (2010) CPC unified gauge-based analysis of global daily precipitation. In: Preprints, 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc, vol. 2

  • Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma Y, Luo T, Xu B, Yang X, Joswiak DR, Wang W et al (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415

    Google Scholar 

  • Zängl G, Reinert D, Rípodas P, Baldauf M (2015) The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q J R Meteorol Soc 141(687):563–579

    Google Scholar 

  • Zeman C, Wedi NP, Dueben PD, Ban N, Schär C (2021) Model intercomparison of cosmo 5.0 and ifs 45r1 at kilometer-scale grid spacing. Geoscientific Model Development 14(7):4617–4639

    Google Scholar 

  • Zhang F, Thapa S, Immerzeel W, Zhang H, Lutz A (2019) Water availability on the Third Pole: A review. Water Security 7:100033

    Google Scholar 

  • Zhao X, Lin Y, Luo Y, Qian Q, Liu X, Liu X, Colle BA (2021) A Double-Moment SBU-YLIN Cloud Microphysics Scheme and Its Impact on a Squall Line Simulation. J Adv Model Earth Syst 13(11):2021–002545

    Google Scholar 

  • Zheng Y, Alapaty K, Herwehe JA, Del Genio AD, Niyogi D (2016) Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain-Fritsch scheme. Mon Weather Rev 144(3):833–860

    Google Scholar 

Download references

Acknowledgements

UIBK acknowledges PRACE for awarding them access to Piz Daint at the Swiss National Supercomputing Center (CSCS, Switzerland). They also acknowledge the Federal Office for Meteorology and Climatology MeteoSwiss, the Swiss National Supercomputing Centre (CSCS), and ETH Zürich for their contributions to the development of the GPU-accelerated version of COSMO. In addition, they acknowledge DKRZ for providing COSMO-ready ERA5 boundary data. We would like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory. The MPAS simulations were performed using computational resources provided by the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. K.S. and R.L. were supported by the U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Global and Regional Model Analysis program area. S.S acknowledges the Data Analyzer in JAMSTEC for the WRF simulations and is supported by JSPS KAKENHI Grant Number JP20K04095. The computations by the University of Gothenburg were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre in Sweden (NSC) partially funded by the Swedish Research Council through grant agreement no. 2018-05973. XC acknowledges the high-performance computing support from the Texas Advanced Computing Center (TACC) and San Diego Supercomputer Center (SDSC). S.J. acknowledges the support provided for the RegCM4 simulations by the IITM Pratyush high performance computing facility. This is a contribution no 10 to CORDEX-FPS-CPTP.

Funding

UHH is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2037 ’CLICCS—Climate, Climatic Change, and Society’—Project Number: 390683824, contribution to the Center for Earth System Research and Sustainability (CEN) of Universität Hamburg. PKP is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)— TRR 301—Project-ID 428312742. SS and LL gratefully acknowledge the support of a Bjerknes Fast Track Initiative from the Norwegian Education Directorate and HPC support through NOTUR/NorStore projects NN9820K/NS9001K. NCAR is sponsored by the National Science Foundation under Cooperative Agreement 1852977. PNNL is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. UGOT is supported by TPE via the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20060402) and Swedish MERGE. UHH also acknowledges the use of DKRZ resources granted by its Scientific Steering Committee under project ID numbers uc0977 & mh1212.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Andreas F. Prein and Nikolina Ban and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andreas F. Prein.

Ethics declarations

Conflict of interest

None.

Author Contributions

Prof. BA was added as an author during the revisions of this paper. Prof. Ahrens contributed to the creation of the GUF-ICON2.3.6 simulations and supported the writing of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prein, A.F., Ban, N., Ou, T. et al. Towards Ensemble-Based Kilometer-Scale Climate Simulations over the Third Pole Region. Clim Dyn 60, 4055–4081 (2023). https://doi.org/10.1007/s00382-022-06543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06543-3

Keywords