Skip to main content

Advertisement

Log in

Synchronization of summer peak temperatures in the Medieval Climate Anomaly and Little Ice Age across the Northern Hemisphere varies with space and time scales

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Previous studies have suggested that preindustrial climate epochs such as the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) did not occur synchronously across large areas of the globe. However, it is still unclear whether and to what extent this conception is independent on the space and time scales considered. Here, we assess the agreement of MCA and LIA peak temperatures at various timescales (i.e., from 51 to 351 years) by analyzing proxy-based temperature reconstructions at local, regional, and continental scales across the Northern Hemisphere. We show that the synchronization of the MCA and LIA peak temperatures tends to be more coherent at longer time and larger space scales. At local and regional scales, the timing of MCA and LIA peak temperatures differs substantially, in line with previous findings. At continental scale, there is still no rigorous synchronization of these climate epochs, but the differences of the timing of the MCA/LIA peak temperatures are mostly smaller than five decades at multi-centennial timescales. The time and space dependent synchronization is related to the relative contribution of variations in external forcing and internal variability at these different scales. These results on the synchronization are robust across several different proxy-based reconstructions used in this study, but the precise timing of the MCA maximum and LIA minimum temperatures detected is largely influenced by the uncertainties in temperature reconstructions. Our results support the relevance of the terms MCA and LIA at long time and large space scales, and suggest that both external forcing and internal variability played roles in driving these climatic epochs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The millennial-length temperature reconstructions at locals from tree ring data were downloaded at https://www.blogs.uni-mainz.de/fb09climatology/reconranking/, and from ice core δ18O data were downloaded at https://www.ncei.noaa.gov/access/paleo-search/study/21171. PAGES2k continental-scale temperature reconstructions are available at https://www.nature.com/articles/ngeo1797#Sect. 13, https://www.ncei.noaa.gov/pub/data/paleo/pages2k/, and https://www.ncei.noaa.gov/access/paleo-search/study/19600. The multi-proxy temperature field reconstructions are available at https://www.ncei.noaa.gov/pub/data/paleo/reconstructions/neukom2019/.

References

  • Anchukaitis KJ, D’Arrigo RD, Andreu-Hayles L, Frank D, Verstege A, Curtis A, Buckley BM, Jacoby GC, Cook ER (2013) Tree-ring-reconstructed summer temperatures from northwestern north america during the last nine centuries. J Clim 26:3001–3012

    Google Scholar 

  • Anchukaitis KJ, Smerdon JE (2022) Progress and uncertainties in global and hemispheric temperature reconstructions of the common era. Q Sci Rev 286:107537

    Google Scholar 

  • Andres HJ, Peltier WR (2016) Regional influences of natural external forcings on the transition from the medieval climate anomaly to the little ice age. J Clim 29:5779–5800

    Google Scholar 

  • Bindoff N, Stott P, AchutaRao K, Allen M, Gillett N, D Gutzler D, K Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 867–952

    Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405

    Google Scholar 

  • Bradley RS, Jones PD (1993) Little ice age’summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376

    Google Scholar 

  • Briffa KR, Melvin TM (2011) A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology: progress and prospects. Springer Netherlands, Dordrecht, pp 113–145

    Google Scholar 

  • Briffa KR, Melvin TM, Osborn TJ, Hantemirov RM, Kirdyanov AV, Mazepa VS, Shiyatov SG, Esper J (2013) Reassessing the evidence for tree-growth and inferred temperature change during the common era in Yamalia, northwest Siberia. Q Sci Rev 72:83–107

    Google Scholar 

  • Briffa KR, Shishov VV, Melvin TM, Vaganov EA, Grudd H, Hantemirov RM, Eronen M, Naurzbaev MM (2008) Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Philos Trans R Soc Lond B Biol Sci 363:2271–2284

    Google Scholar 

  • Brönnimann S, Franke J, Nussbaumer SU, Zumbühl HJ, Steiner D, Trachsel M, Hegerl GC, Schurer A, Worni M, Malik A, Flückiger J, Raible CC (2019) Last phase of the little ice age forced by volcanic eruptions. Nat Geosci 12:650–656

    Google Scholar 

  • Büntgen U, Frank D, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, AD 755–2004. J Clim 19:5606–5623

    Google Scholar 

  • Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for alpine summer temperatures. Clim Dyn 25:141–153

    Google Scholar 

  • Büntgen U, Carrer M, Esper J (2009) Improving Alpine summer temperature reconstructions by increasing sample size. Trace 7:36–43

    Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KU, Wanner H, Luterbacher J, Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582

    Google Scholar 

  • Büntgen U, Frank D, Neuenschwander T, Esper J (2012) Fading temperature sensitivity of Alpine tree growth at its Mediterranean margin and associated effects on large-scale climate reconstructions. Clim Change 114:651–666

    Google Scholar 

  • Büntgen U, Kyncl T, Ginzler C, Jacks DS, Esper J, Tegel W, Heussner KU, Kyncl J (2013) Filling the Eastern European gap in millennium-long temperature reconstructions. Proc Natl Acad Sci USA 110:1773–1778

    Google Scholar 

  • Büntgen U, Myglan VS, Ljungqvist FC, McCormick M, Di Cosmo N, Sigl M, Jungclaus J, Wagner S, Krusic PJ, Esper J, Kaplan JO, de Vaan MAC, Luterbacher J, Wacker L, Tegel W, Kirdyanov AV (2016) Cooling and societal change during the late antique little ice age from 536 to around 660 AD. Nat Geosci 9:231–236

    Google Scholar 

  • Büntgen U, Allen K, Anchukaitis KJ, Arseneault D, Boucher É, Bräuning A, Chatterjee S, Cherubini P, Churakova OV, Corona C, Gennaretti F, Grießinger J, Guillet S, Guiot J, Gunnarson B, Helama S, Hochreuther P, Hughes MK, Huybers P, Kirdyanov AV, Krusic PJ, Ludescher J, Meier WJH, Myglan VS, Nicolussi K, Oppenheimer C, Reinig F, Salzer MW, Seftigen K, Stine AR, Stoffel M, St. George S, Tejedor E, Trevino A, Trouet V, Wang J, Wilson R, Yang B, Xu G, Esper J (2021) The influence of decision-making in tree ring-based climate reconstructions. Nat Commun 12:3411

    Google Scholar 

  • Büntgen U (2022) Scrutinizing tree-ring parameters for Holocene climate reconstructions. Wires Clim Change 13:e778

    Google Scholar 

  • Christiansen B, Ljungqvist FC (2017) Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev Geophys 55:40–96

    Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237

    Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370

    Google Scholar 

  • Cook ER, Krusic PJ, Anchukaitis KJ, Buckley BM, Nakatsuka T, Sano M, Members PAk (2013) Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim Dyn 41:2957–2972

    Google Scholar 

  • Davi NK, D’Arrigo R, Jacoby GC, Cook ER, Anchukaitis K, Nachin B, Rao MP, Leland C (2015) A long-term context (931–2005 C.E.) for rapid warming over Central Asia. Q Sci Rev 121:89–97

    Google Scholar 

  • Diaz HF, Trigo R, Hughes MK, Mann ME, Xoplaki E, Barriopedro D (2011) Spatial and temporal characteristics of climate in medieval times revisited. Bull Amer Meteor Soc 92:1487–1500

    Google Scholar 

  • Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkamper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Buntgen U (2012) Orbital forcing of tree-ring data. Nat Clim Change 2:862–866

    Google Scholar 

  • Esper J, Krusic PJ, Ljungqvist FC, Luterbacher J, Carrer M, Cook E, Davi NK, Hartl-Meier C, Kirdyanov A, Konter O, Myglan V, Timonen M, Treydte K, Trouet V, Villalba R, Yang B, Büntgen U (2016) Ranking of tree-ring based temperature reconstructions of the past millennium. Q Sci Rev 145:134–151

    Google Scholar 

  • Esper J, George SS, Anchukaitis K, D’Arrigo R, Ljungqvist FC, Luterbacher J, Schneider L, Stoffel M, Wilson R, Büntgen U (2018) Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 50:81–90

    Google Scholar 

  • Fang K, Chen D, Ilvonen L, Pasanen L, Holmström L, Seppä H, Huang G, Ou T, Linderholm H (2019) Oceanic and atmospheric modes in the pacific and atlantic oceans since the little ice age (LIA): towards a synthesis. Q Sci Rev 215:293–307

    Google Scholar 

  • Fang M, Zheng J, Wang J, Zhu H, Zhang X (2022) Assimilating an expanded tree ring dataset to reconstruct the millennial air temperature fields for the Northern Hemisphere. Int J Climatol 42:5218–5231

    Google Scholar 

  • Frankcombe LM, England MH, Mann ME, Steinman BA (2015) Separating internal variability from the externally forced climate response. J Clim 28:8184–8202

    Google Scholar 

  • Franzke CLE, Barbosa S, Blender R, Fredriksen HB, Laepple T, Lambert F, Nilsen T, Rypdal K, Rypdal M, Scotto MG, Vannitsem S, Watkins NW, Yang L, Yuan N (2020) The structure of climate variability across scales. Rev Geophys 58: e2019RG000657

  • Fritts HC (1976) Tree Rings and Climate. Academic Press, London

    Google Scholar 

  • Gennaretti F, Arseneault D, Nicault A, Perreault L, Begin Y (2014) Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc Natl Acad Sci USA 111:10077–10082

    Google Scholar 

  • Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16:169–182

    Google Scholar 

  • Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Q Sci Rev 24:1345–1360

    Google Scholar 

  • Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the medieval climate anomaly. Clim Dyn 37:1217–1245

    Google Scholar 

  • Grootes P, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. J Geophys Res 102:26455–26470

    Google Scholar 

  • Grove JM (1988) The little ice age. London, Methunen, p 498

    Google Scholar 

  • Gunnarson BE, Linderholm HW, Moberg A (2011) Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Clim Dyn 36:97–108

    Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7:109

    Google Scholar 

  • Hartl-Meier C, Büntgen U, Smerdon JE, Zorita E, Krusic PJ, Ljungqvist FC, Schneider L, Esper J (2017) Temperature covariance in tree ring reconstructions and model simulations over the past millennium. Geophys Res Lett 44:9458–9469

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Amer Meteor Soc 90:1095–1108

    Google Scholar 

  • Helama S, Fauria MM, Mielikäinen K, Timonen M, Eronen M (2010) Sub-milankovitch solar forcing of past climates: mid and late holocene perspectives. Geol Soc Am Bull 122:1981–1988

    Google Scholar 

  • Helama S, Vartiainen M, Holopainen J, Mäkelä HM, Kolström T, Meriläinen J (2014) A palaeotemperature record for the Finnish Lakeland based on microdensitometric variations in tree rings. Geochronometria 41:265–277

    Google Scholar 

  • Helama S, Stoffel M, Hall RJ, Jones PD, Arppe L, Matskovsky VV, Timonen M, Nöjd P, Mielikäinen K, Oinonen M (2021) Recurrent transitions to Little Ice Age-like climatic regimes over the Holocene. Clim Dyn 56:3817–3833

    Google Scholar 

  • Hernández A, Martin-Puertas C, Moffa-Sánchez P, Moreno-Chamarro E, Ortega P, Blockley S, Cobb KM, Comas-Bru L, Giralt S, Goosse H, Luterbacher J, Martrat B, Muscheler R, Parnell A, Pla-Rabes S, Sjolte J, Scaife AA, Swingedouw D, Wise E, Xu G (2020) Modes of climate variability: synthesis and review of proxy-based reconstructions through the Holocene. Earth-Sci Rev 209:103286

    Google Scholar 

  • Kunz T, Laepple T (2021) Frequency-dependent estimation of effective spatial degrees of freedom. J Clim 34:7373–7388

    Google Scholar 

  • Lehner F, Born A, Raible CC, Stocker TF (2013) Amplified inception of european little ice age by sea ice–ocean–atmosphere feedbacks. J Clim 26:7586–7602

    Google Scholar 

  • Ljungqvist FC, Krusic PJ, Brattström G, Sundqvist HS (2012) Northern Hemisphere temperature patterns in the last 12 centuries. Clim Past 8:227–249

    Google Scholar 

  • Ljungqvist FC, Zhang Q, Brattström G, Krusic PJ, Seim A, Li Q, Zhang Q, Moberg A (2019) Centennial-scale temperature change in last millennium simulations and proxy-based reconstructions. J Clim 32:2441–2482

    Google Scholar 

  • Lloyd AH, Graumlich LJ (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78:1199–1210

    Google Scholar 

  • Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian rockies during the last millennium: a revised record. Clim Dyn 24:131–144

    Google Scholar 

  • Luterbacher J, Werner JP, Smerdon JE, Fernández-Donado L, González-Rouco FJ, Barriopedro D, Ljungqvist FC, Büntgen U, Zorita E, Wagner S, Esper J, McCarroll D, Toreti A, Frank D, Jungclaus JH, Barriendos M, Bertolin C, Bothe O, Brázdil R, Camuffo D, Dobrovolný P, Gagen M, García-Bustamante E, Ge Q, Gómez-Navarro JJ, Guiot J, Hao Z, Hegerl GC, Holmgren K, Klimenko VV, Martín-Chivelet J, Pfister C, Roberts N, Schindler A, Schurer A, Solomina O, von Gunten L, Wahl E, Wanner H, Wetter O, Xoplaki E, Yuan N, Zanchettin D, Zhang H, Zerefos C (2016) European summer temperatures since roman times. Environ Res Lett 11:024001

    Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Google Scholar 

  • Matthews JA, Briffa KR (2005) The ‘little ice age’: re-evaluation of an evolving concept. Geogr Ann Ser Phys Geogr 87:17–36

    Google Scholar 

  • McKay NP, Kaufman DS (2014) An extended Arctic proxy temperature database for the past 2000 years. Sci Data 1:140026

    Google Scholar 

  • Melvin TM, Grudd H, Briffa KR (2013) Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: re-processing 1500 years of torneträsk density and ring-width data. Holocene 23:364–373

    Google Scholar 

  • Neukom R, Steiger N, Gómez-Navarro JJ, Wang J, Werner JP (2019) No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571:550–554

    Google Scholar 

  • Opel T, Fritzsche D, Meyer H (2013) Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Clim Past 9:2379–2389

    Google Scholar 

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311:841–844

    Google Scholar 

  • PAGES2k-Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346

    Google Scholar 

  • PAGES2k-Consortium (2017) A global multiproxy database for temperature reconstructions of the common era. Sci Data 4:170088

    Google Scholar 

  • PAGES2k-Consortium (2019) Consistent multidecadal variability in global temperature reconstructions and simulations over the common era. Nat Geosci 12:643–649

    Google Scholar 

  • PAGES2k-PMIP3-group (2015) Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim Past 11:1673–1699

    Google Scholar 

  • Ratna SB, Osborn TJ, Joshi M, Yang B, Wang J (2019) Identifying teleconnections and multidecadal variability of East Asian surface temperature during the last millennium in CMIP5 simulations. Clim Past 15:1825–1844

    Google Scholar 

  • Salzer MW, Kipfmueller KF (2005) Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau. USA Clim Change 70:465–487

    Google Scholar 

  • Salzer MW, Bunn AG, Graham NE, Hughes MK (2014) Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim Dyn 42:1517–1526

    Google Scholar 

  • Schneider L, Smerdon JE, Büntgen U, Wilson RJS, Myglan VS, Kirdyanov AV, Esper J (2015) Revising mid-latitude summer-temperatures back to AD 600 based on a wood density network. Geophys Res Lett 42:4556–4562

    Google Scholar 

  • Schurer AP, Hegerl GC, Mann ME, Tett SFB, Phipps SJ (2013) Separating forced from chaotic climate variability over the past millennium. J Clim 26:6954–6973

    Google Scholar 

  • Sidorova O, Naurzbaev M, Vaganov E (2005) An integral estimation of tree ring chronologies from subarctic regions of Eurasia. Proc TRACE 4:84–92

    Google Scholar 

  • Smerdon JE, Kaplan A, Zorita E, González-Rouco JF, Evans MN (2011) Spatial performance of four climate field reconstruction methods targeting the common era. Geophys Res Lett 38:L11705

    Google Scholar 

  • Smerdon JE, Pollack HN (2016) Reconstructing Earth’s surface temperature over the past 2000 years: the science behind the headlines. Wires Clim Change 7:746–771

    Google Scholar 

  • Steinman BA, Mann ME, Miller SK (2015) Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347:988–991

    Google Scholar 

  • Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. Wires Clim Change 1:192–211

    Google Scholar 

  • Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792

    Google Scholar 

  • Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324:78–80

    Google Scholar 

  • Trouet V, Diaz HF, Wahl ER, Viau AE, Graham R, Graham N, Cook ER (2013) A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environ Res Lett 8:024008

    Google Scholar 

  • Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen ML, Steffensen JP, Svensson A, Olsen J, Heinemeier J (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res 111:D13102

    Google Scholar 

  • Vinther BM, Clausen HB, Fisher DA, Koerner RM, Johnsen SJ, Andersen KK, Dahl-Jensen D, Rasmussen SO, Steffensen JP, Svensson AM (2008) Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland ice core chronology. J Geophys Res 113:D08115

    Google Scholar 

  • Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ (2010) Climatic signals in multiple highly resolved stable isotope records from Greenland. Q Sci Rev 29:522–538

    Google Scholar 

  • Wang Q, Fan X, Wang M (2013) Recent warming amplification over high elevation regions across the globe. Clim Dyn 43:87–101

    Google Scholar 

  • Wang J, Emile-Geay J, Guillot D, Smerdon JE, Rajaratnam B (2014a) Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Clim Past 10:1–19

  • Wang J, Yang B, Qin C, Kang S, He M, Wang Z (2014b) Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic multidecadal oscillation. Clim Dyn 43:627–640

  • Wang J, Emile-Geay J, Guillot D, McKay NP, Rajaratnam B (2015) Fragility of reconstructed temperature patterns over the common era: implications for model evaluation. Geophys Res Lett 42:7162–7170

    Google Scholar 

  • Wang J, Yang B, Ljungqvist FC, Luterbacher J, Osborn TJ, Briffa KR, Zorita E (2017) Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years. Nat Geosci 10:512–517

    Google Scholar 

  • Wang J, Yang B, Osborn TJ, Ljungqvist FC, Zhang H, Luterbacher J (2018) Causes of East Asian temperature multidecadal variability since 850 CE. Geophys Res Lett 45:13485–413494

    Google Scholar 

  • Wang J, Yang B, Zheng J, Zhang X, Wang Z, Fang M, Shi F, Liu J (2020a) Evaluation of multidecadal and longer-term temperature changes since 850 CE based on Northern Hemisphere proxy-based reconstructions and model simulations. Sci China Earth Sci 63:1126–1143

  • Wang J, Chen Y, Tett SFB, Yan Z, Zhai P, Feng J, Xia J (2020b) Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat Commun 11:528

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Q Sci Rev 27:1791–1828

    Google Scholar 

  • Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Q Sci Rev 30:3109–3123

    Google Scholar 

  • Wanner H, Pfister C, Neukom R (2022) The variable European little ice age. Q Sci Rev 287:107531

    Google Scholar 

  • Werner JP, Divine DV, Charpentier Ljungqvist F, Nilsen T, Francus P (2018) Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Clim Past 14:527–557

    Google Scholar 

  • Wiles GC, D’Arrigo RD, Barclay D, Wilson RS, Jarvis SK, Vargo L, Frank D (2014) Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. Holocene 24:198–208

    Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930

    Google Scholar 

  • Yang B, Qin C, Brauning A, Osborn TJ, Trouet V, Ljungqvist FC, Esper J, Schneider L, Griessinger J, Buntgen U, Rossi S, Dong G, Yan M, Ning L, Wang J, Wang X, Wang S, Luterbacher J, Cook ER, Stenseth NC (2021) Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6700 years. Proc Natl Acad Sci USA 118:e2102007118

    Google Scholar 

  • Yun S, Smerdon JE, Li B, Zhang X (2021) A pseudoproxy assessment of why climate field reconstruction methods perform the way they do in time and space. Clim Past 17:2583–2605

    Google Scholar 

  • Zhang Y, Shao XM, Yin ZY, Wang Y (2014) Millennial minimum temperature variations in the Qilian Mountains, China: evidence from tree rings. Clim Past 10:1763–1778

    Google Scholar 

  • Zhang P, Linderholm HW, Gunnarson BE, Björklund J, Chen D (2016) 1200 years of warm-season temperature variability in central Fennoscandia inferred from tree-ring density. Clim Past 12:1297–1312

    Google Scholar 

  • Zhang R, Sutton R, Danabasoglu G, Kwon YO, Marsh R, Yeager SG, Amrhein DE, Little CM (2019) A review of the role of the atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev Geophys 57:316–375

    Google Scholar 

Download references

Acknowledgements

We thank the PAGES2k network members and many others for making their temperature reconstructions publicly available.

Funding

JW and MF are supported by the National Key R&D Program of China (grant no. 2017YFA0603302). BY, JW, and JL are supported by the National Natural Science Foundation of China (grant nos. 41888101 and 41977383). JW also acknowledges the support by the Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences (grant no. 2018471).

Author information

Authors and Affiliations

Authors

Contributions

JW and BY designed the study. JW carried out the data analysis and made the figures with the contributions from MF and ZW. JW drafted and revised the manuscript with input from BY, MF, ZW, JL and SK.

Corresponding author

Correspondence to Jianglin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, B., Fang, M. et al. Synchronization of summer peak temperatures in the Medieval Climate Anomaly and Little Ice Age across the Northern Hemisphere varies with space and time scales. Clim Dyn 60, 3455–3470 (2023). https://doi.org/10.1007/s00382-022-06524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06524-6

Keywords

Navigation