Skip to main content
Log in

Possible widths of Indian summer monsoon trajectories in Tibetan Plateau revealed by the direction of maximum summer precipitation decreases in recent decades

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Tibetan Plateau (TP) affects its surrounding regions through thermal and dynamic processes. Hydrological cycles in TP are experiencing dramatic changes under the warming climate. As one of the most important circulations, the Indian summer monsoon (ISM) affects precipitation changes and therefore has a major effect on TP water resources. In this paper, the widths of ISM are defined as extents perpendicular to the moisture trajectories. They were calculated using ground-based measurements and verified with reanalysis datasets. The directions of maximum summer precipitation decreases (Dirmin) were selected using the cluster proxy of directions of daily maximum winds (Wd) and the slope aspects derived from digital elevation models (DEMs) at various resolutions. The major findings were that (1) similar southwestern Dirmin were found based on the Wd and the slope aspects derived from DEMs with resolutions of 100 and 200 km; (2) Reanalysis data from China Meteorological Forcing Dataset verified that a high percentage (~ 90%) of cells showing precipitation decreases also had slope aspects (derived from 100- and 200-km resolution DEMs) in the range of 112.5°–247.5°; (3) The possible widths of ISM trajectories in TP were approximately 100–200 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aichner B, Feakins SJ, Lee JE, Herzschuh U, Liu X (2015) High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim past 11(4):619–633

    Article  Google Scholar 

  • Cai D, You Q, Fraedrich K, Guan Y (2017a) Spatiotemporal temperature variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus. J Clim 30(3):969–984

    Article  Google Scholar 

  • Cai Z, Tian L, Bowen GJ (2017b) ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. Earth Planet Sci Lett 475:25–33

    Article  Google Scholar 

  • Chen B, Xu XD, Yang S, Zhang W (2012) On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor Appl Climatol 110(3):423–435

    Article  Google Scholar 

  • Chen X, Long D, Hong Y, Zeng C, Yan D (2017) Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: how snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour Res 53(3):2431–2466

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau. J Geophys Res Earth Surf 112(F2)

  • Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dyn 6(1):109–124

    Article  Google Scholar 

  • Dong W, Lin Y, Wright JS, Ming Y, Xie Y, Wang B, Luo Y, Huang W, Huang J, Wang L, Tian L, Peng Y, Xu F (2016) Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat Commun 7(1):1–9

    Article  Google Scholar 

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5:13711

    Article  Google Scholar 

  • Feng L, Zhou T (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis. J Geophys Res Atmos 117(D20)

  • Gao DY (2008) Investigation and research on Yarlung Zangbo River water vapor channel. J Nat 30(5):301–303

    Google Scholar 

  • Gao Y, Cuo L, Zhang Y (2014) Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J Clim 27(5):1876–1893

    Article  Google Scholar 

  • Guo X, Tian L (2022) Spatial patterns and possible mechanisms of precipitation changes in recent decades over and around the Tibetan Plateau in the context of intense warming and weakening winds. Clim Dynam 1–22.

  • Guo D, Wang H (2013) Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J Geophys Res Atmos 118(11):5216–5230

    Article  Google Scholar 

  • Guo X, Wang L, Tian L (2015) Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau. Int J Climatol 36(4):1901–1916

    Article  Google Scholar 

  • Guo X, Tian L, Wen R, Yu W, Qu D (2017) Controls of precipitation δ18O on the northwestern Tibetan Plateau: a case study at Ngari station. Atmos Res 189:141–151

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(4)

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X (2020) The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data 7:25. https://doi.org/10.1038/s41597-020-0369-y

    Article  Google Scholar 

  • Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nat Clim Change 8(2):135–140

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Climate Change 2007: impacts, adaptation and vulnerability. contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Kuang X, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res Atmos 121(8):3979–4007

    Article  Google Scholar 

  • Kuttippurath J, Murasingh S, Stott PA, Sarojini BB, Jha MK, Kumar P, Nair PJ, Varikoden H, Raj S, Francis PA, Pandey PC (2021) Observed rainfall changes in the past century (1901–2019) over the wettest place on Earth. Environ Res Lett 16(2):024018

    Article  Google Scholar 

  • Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y (2013) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J Hydrol 483:61–67

    Article  Google Scholar 

  • Lei Y, Yang K, Wang B, Sheng Y, Bird BW, Zhang G, Tian L (2014) Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim Change 125(2):281–290

    Article  Google Scholar 

  • Li X, Wang L, Guo X, Chen D (2017) Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int J Climatol 37(S1):1278–1284

    Article  Google Scholar 

  • Li H, Li X, Yang D, Wang J, Gao B, Pan X, Zhang Y, Hao X (2019) Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale. J Geophys Res Atmos 124(16):8874–8895

    Article  Google Scholar 

  • Lin C, Yang K, Qin J, Fu R (2013) Observed coherent trends of surface and upper-air wind speed over China since 1960. J Clim 26(9):2891–2903

    Article  Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68(3):164

    Article  Google Scholar 

  • Mohan TS, Rajeevan M (2017) Past and future trends of hydroclimatic intensity over the Indian monsoon region. J Geophys Res Atmos 122(2):896–909

    Article  Google Scholar 

  • Nair PJ, Chakraborty A, Varikoden H, Francis PA, Kuttippurath J (2018) The local and global climate forcings induced inhomogeneity of Indian rainfall. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Nair PJ, Varikoden H, Francis PA, Chakraborty A, Pandey PC (2021) Atmospheric moisture as a proxy for the ISMR variability and associated extreme weather events. Environ Res Lett 16(1):014045

    Article  Google Scholar 

  • Pan C, Zhu B, Gao J, Kang H, Zhu T (2019) Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim Dyn 52(1–2):181–196

    Article  Google Scholar 

  • Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35(14)

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ, Grp MRIEW (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430

    Article  Google Scholar 

  • Pritchard HD (2019) Asia’s shrinking glaciers protect large populations from drought stress. Nature 569(7758):649–654

    Article  Google Scholar 

  • Qi WW, Zhang BP, Yao YH, Zhao F, Zhang S, He WH (2016) A topographical model for precipitation pattern in the Tibetan Plateau. J Mt Sci 13(5):763–773

    Article  Google Scholar 

  • Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97(1–2):321

    Article  Google Scholar 

  • Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30(2–3):307–319

    Article  Google Scholar 

  • Rajagopalan B, Molnar P (2013) Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J Geophys Res Atmos 118(3):1170–1178

    Article  Google Scholar 

  • Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36(6)

  • Risi C, Bony S, Vimeux F (2008a) Influence of convective processes on the isotopic composition (delta O-18 and delta D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113(D19):148–227

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F, Descroix L, Ibrahim B, Lebreton E, Mamadou I, Sultan B (2008b) What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys Res Lett 35(24):L24808

    Article  Google Scholar 

  • Shen C, Wang WC, Zeng G (2011) Decadal variability in snow cover over the Tibetan Plateau during the last two centuries. Geophys Res Lett 38(10)

  • Singh P, Nakamura K (2009) Diurnal variation in summer precipitation over the central Tibetan Plateau. J Geophys Res Atmos 114(D20)

  • Song C, Huang B, Richards K, Ke L, Hien Phan V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186

    Article  Google Scholar 

  • Stolbova V, Surovyatkina E, Bookhagen B, Kurths J (2016) Tipping elements of the Indian monsoon: prediction of onset and withdrawal. Geophys Res Lett 43(8):3982–3990

    Article  Google Scholar 

  • Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y (2016) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global Planet Change 136:82–95

    Article  Google Scholar 

  • Sun J, Yang K, Guo W, Wang Y, He J, Lu H (2020) Why has the Inner Tibetan Plateau become wetter since the mid-1990s? J Clim 33(19):8507–8522

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res Atmos 106(D22):28081–28088

    Article  Google Scholar 

  • Tian H, Guo PW, Lu WS (2004) Characteristic of vapor inflow corridors related to summer rainfall in China and impact factors. J Trop Meteorol 20(4):401–408

    Google Scholar 

  • Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai‐Tibetan Plateau. J Geophys Res Atmos 113(D13)

  • Wu G, Liu Y, Zhang Q, Duan A, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol 8(4):770–789

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Gao S (2008) World water tower: an atmospheric perspective. Geophys Res Lett 35(20)

  • Xu J, Koldunov N, Remedio ARC, Sein DV, Zhi X, Jiang X, Xu M, Zhu X, Fraedrich K, Jacob D (2018) On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Clim Dyn 51(11):4525–4542

    Article  Google Scholar 

  • Yang K, He J, Tang WJ (2010) On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric for Meteorol 150(1):38–46

    Article  Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change 109(3–4):517–534

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

    Article  Google Scholar 

  • Yang R, Zhu L, Wang J, Ju J, Ma Q, Turner F, Guo Y (2017) Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim Change 140(3–4):621–633

    Article  Google Scholar 

  • Yao TD, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, Yang XX, Duan KQ, Zhao HB, Xu BQ, Pu JC, Lu AX, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2(9):663–667

    Article  Google Scholar 

  • Yao TD, Masson-Delmotte V, Gao J, Yu WS, Yang XX, Risi C, Sturm C, Werner M, Zhao HB, He Y, Ren W, Tian LD, Shi CM, Hou SG (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51(4):525–548

    Article  Google Scholar 

  • Yao TD, Xue YK, Chen DL, Chen FH, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang RH, Xu BQ, Dozier J, Gillespie T, Gu Y, Kang SC, Piao SL, Sugimoto S, Ueno K, Wang L, Wang WC, Zhang F, Sheng YW, Guo WD, Ailikun, Yang XX, Ma YM, Shen SSP, Su ZB, Chen F, Liang SL, Liu YM, Singh VP, Yang K, Yang DQ, Zhao XQ, Qian Y, Zhang Y, Li Q (2019) Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull Am Meteorol Soc 100(3):423–444

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H, Zhang K, Zhu F (2014) Lakes’ state and abundance across the Tibetan Plateau. Chin Sci Bull 59(24):3010–3021

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D (2017a) Recent changes in the moisture source of precipitation over the Tibetan Plateau. J Clim 30(5):1807–1819

    Article  Google Scholar 

  • Zhang GQ, Yao TD, Shum CK, Yi S, Yang K, Xie HJ, Feng W, Bolch T, Wang L, Behrangi A, Zhang HB, Wang WC, Xiang Y, Yu JY (2017b) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett 44(11):5550–5560

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D, van der Ent RJ, Liu X, Li W, Haile GG (2019a) Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. J Hydrometeorol 20(2):217–229

    Article  Google Scholar 

  • Zhang T, Zhang YS, Gun YH, Ma N, Dai D, Song HT, Qu DM, Gao HF (2019b) Controls of stable isotopes in precipitation on the central Tibetan Plateau: a seasonal perspective. Quatern Int 513:66–79

    Article  Google Scholar 

  • Zhang Y, Huang W, Zhong D (2019c) Major moisture pathways and their importance to rainy season precipitation over the Sanjiangyuan region of the Tibetan Plateau. J Clim 32(20):6837–6857

    Article  Google Scholar 

  • Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015) Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep 5(1):1–8

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (grant numbers 42071090, 41988101, 41701080, 91747201, 41771043, 41530748, 41571033) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19070301 and XDA20060202). We thank the China Meteorological Administration (CMA, http://cdc.cma.gov.cn/) for access to the meteorological station data used in this analysis. The China Meteorological Forcing Dataset (CMFD) was provided by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). The data that support the findings of this study are available from the CMA (http://data.cma.cn/) and the CMFD (http://data.tpdc.ac.cn). We sincerely thank the editor and the anonymous reviewers for their hard work on the improvement of our manuscript. We would also like to express our sincere thanks to Edward A Derbyshire, who helped us improve the English expressions.

Funding

This research was funded by the National Natural Science Foundation of China (grant numbers 42071090, 41988101, 41701080, 91747201, 41771043, 41530748, 41571033) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19070301 and XDA20060202).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XG, LW and LT. The first draft of the manuscript was written by XG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoyu Guo.

Ethics declarations

Conflict of interest

Authors Xiaoyu Guo, Lei Wang, Lide Tian, Jing Zhou and Yuanwei Wang declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 20504 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, L., Tian, L. et al. Possible widths of Indian summer monsoon trajectories in Tibetan Plateau revealed by the direction of maximum summer precipitation decreases in recent decades. Clim Dyn 60, 2315–2330 (2023). https://doi.org/10.1007/s00382-022-06446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06446-3

Keywords

Navigation