Skip to main content

Advertisement

Log in

Assessment of the RegCM4-CORDEX-CORE performance in simulating cyclones affecting the western coast of South America

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we assess the performance of the Regional Climate Model version 4 (RegCM4) in simulating the climatology of the cyclones near the west coast of South America. The synoptic evolution and seasonality of these systems are thoroughly investigated. The analyses are based on four simulations from the CORDEX-CORE Southern America (SA) domain, at 0.25° of horizontal resolution: one driven by ERA-Interim and three driven by different GCMs. The reference dataset is represented by ERA5. Cyclones were detected by an objective scheme in the period 1995–2005 and classified in three different classes: (i) Coastal Lows (CLs) and cyclones affecting the coast (CAC) (ii) crossing and (iii) not crossing the Andes. In general, RegCM4 is able to reproduce the climatology of cyclones affecting the western coast of SA. In particular: (i) CLs are shown to be more frequent in austral summer although their frequency is underestimated by the simulations in this season; (ii) CAC not crossing the Andes represent 76% of all CAC and are more frequent in winter, with simulation underestimating their frequency by ~ 22% due to the differences in the simulated upper-level jets, which tend to get weaker (by ~ 5–10 m s− 1) northwards of 30°S; (iii) the frequency of CAC crossing the Andes tends to be overestimated mainly in winter, which is associated with the combination of the stronger upper-level jets and weaker SLP in the simulations, especially southwards of 40°S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Aceituno P, Boisier JP, Garreaud R, Rondanelli R, Rutllant JA (2021) Climate and weather in Chile. In Water resources of Chile. Springer Cham, pp 7–29

  • Andrelina B, Reboita MS (2021) Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul. Anuário do Instituto de Geociências 44:39515. https://doi.org/10.11137/1982-3908_2021_44_39515

    Article  Google Scholar 

  • Barahona C (2013) Precipitaciones asociadas a Bajas Segregadas en la zona central de Chile, entre los años 2003 y 2005. Report to obtain a professional title in Meteorology. Universidad de Valparaíso

  • Barrett BS, Garreaud R, Falvey M (2009) Effect of the Andes Cordillera on precipitation from a midlatitude cold front. Mon Weather Rev 137(9):3092–3109

    Article  Google Scholar 

  • Belmonte Rivas M, Stoffelen A (2019) Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci 15:831–852. https://doi.org/10.5194/os-15-831-2019

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB et al (2013) The Norwegian Earth System Model, NorESM1-M–Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720

    Article  Google Scholar 

  • Campetella C, Possia N (2007) Upper-level cut-off lows in southern South America. Meteorol Atmos Phys 96:181–191. https://doi.org/10.1007/s00703-006-0227-2

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2008) Evaluation of the HadGEM2 model. Met Office, Exeter, UK, p 48

    Google Scholar 

  • Crespo NM, da Rocha RP, Sprenger M, Wernli H (2021) A potential vorticity perspective on cyclogenesis over centre-eastern South America. Int J Climatol 41:663–678. https://doi.org/10.1002/joc.6644

    Article  Google Scholar 

  • Dalagnol R, Gramcianinov CB, Crespo NM et al (2022) Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change? Clim Resil Sustain 1:e15. https://doi.org/10.1002/cli2.15

    Article  Google Scholar 

  • de Jesus EM, da Rocha RP, Crespo NM, Reboita MS, Gozzo LF (2021) Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Clim Dyn 56:537–557. https://doi.org/10.1007/s00382-020-05490-1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dullaart JCM, Muis S, Bloemendaal N et al (2020) Advancing global storm surge modelling using the new ERA5 climate reanalysis. Clim Dyn 54:1007–1021. https://doi.org/10.1007/s00382-019-05044-0

    Article  Google Scholar 

  • Elguindi N, Grundstein A, Bernardes S et al (2014) Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Clim Change 122:523–538. https://doi.org/10.1007/s10584-013-1020-0

    Article  Google Scholar 

  • Espinoza JC, Garreaud R, Poveda G et al (2020) Hydroclimate of the Andes Part I: main climatic features. Front Earth Sci 8:64

    Article  Google Scholar 

  • Flaounas E, Kelemen FD, Wernli H et al (2018) Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Clim Dyn 51(3):1023–1040

    Article  Google Scholar 

  • Fuenzalida HA, Sánchez R, Garreaud RD (2005) A climatology of cutoff lows in the Southern Hemisphere.Journal of Geophysical Research: Atmospheres, 110(D18)

  • Gallardo L, Olivares G, Langner J, Aarhus B (2002) Coastal lows and sulfur air pollution in Central Chile. Atmos Environ 36(23):3829–3841

    Article  Google Scholar 

  • Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev 119:1293–1302

    Article  Google Scholar 

  • Garreaud R (1999) Cold air incursions over subtropical and tropical South America: A numerical case study. Mon Weather Rev 127(12):2823–2853

    Article  Google Scholar 

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11

    Article  Google Scholar 

  • Garreaud R, Fuenzalida HA (2007) The Influence of the Andes on Cutoff Lows: A Modeling Study. Mon Weather Rev 135(4):1596–1613. https://doi.org/10.1175/MWR3350.1

    Article  Google Scholar 

  • Garreaud R, Rutllant J, Fuenzalida H (2002) Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon Weather Rev 130(1):75–88

    Article  Google Scholar 

  • Garreaud RD, Rutllant J (2003) Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Mon Weather Rev 131(5):891–908

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29

    Article  Google Scholar 

  • Giorgi F, Coppola E, Jacob D et al (2022) The CORDEX-CORE EXP-I Initiative: Description and Highlight Results from the Initial Analysis. BAMS 103(2):E293–E310. https://doi.org/10.1175/BAMS-D-21-0119.1

    Article  Google Scholar 

  • Gómez-Contreras Á, Ávila NC, Rapanague MJ, Rojas RR (2021) Coastal lows climatology along the Chilean coast using ERA5 reanalysis (No. EGU21-5656). Copernicus Meetings

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Holton JR, Hakim GJ (2013) An Introduction to Dynamic Meteorology, 5th edn. Elsevier Academic Press, New York. https://doi.org/10.1016/C2009-0-63394-8

    Book  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on southern hemisphere storm tracks. J Clim 18:4108–4129

    Article  Google Scholar 

  • Lionello P, Trigo IF, Gil V et al (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A: Dynamic Meteorology and Oceanography 68(1):29391

    Article  Google Scholar 

  • Marrafon VH, Reboita MS, da Rocha RP, Crespo NM (2021) Extratropical Cyclones in the Southern Hemisphere: comparison among different Reanalyses. Rev Bras Climatol 28:48–73

    Google Scholar 

  • Molina MO, Gutiérrez C, Sánchez E (2021) Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int J Climatol 41:4864–4878. https://doi.org/10.1002/joc.7103

    Article  Google Scholar 

  • Muñoz C, Schultz DM (2021) Cutoff Lows, Moisture Plumes, and Their Influence on Extreme-Precipitation Days in Central Chile. J Appl Meteorol Climatology 60(4):437–454

    Article  Google Scholar 

  • Muñoz RC, Armi L, Rutllant JA et al (2020) Raco Wind at the Exit of the Maipo Canyon in Central Chile: Climatology, Special Observations, and Possible Mechanisms. J Appl Meteorol Climatology 59(4):725–749

    Article  Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N et al (2013) IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94(4):529–547

    Article  Google Scholar 

  • Palmen E, Newton CW (1969) Atmospheric Circulation System. Academic Press, New York

    Google Scholar 

  • Pezza AB, Ambrizzi T (2003) Variability of Southern Hemisphere cyclone and anticyclone behavior: further analysis. J Clim 16:1075–1083

    Article  Google Scholar 

  • Pezza AB, Durrant T, Simmonds I, Smith I (2008) Southern hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and southern Australia rainfall. J Clim 21:5566–5584

    Article  Google Scholar 

  • Pezza AB, Rashid HA, Simmonds I (2012) Climate links and recent extremes in antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Clim Dyn 38:57–73

    Article  Google Scholar 

  • Pezza AB, Simmonds I (2005) The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys Res Lett 32. doi:https://doi.org/10.1029/2005GL023390

  • Pinheiro HR, Hodges KI, Gan MA, Ferreira NJ (2017) A new perspective of the climatological features of upper-level cut-off lows in the Southern Hemisphere. Clim Dyn 48:541–559

    Article  Google Scholar 

  • Portmann R, Sprenger M, Wernli H (2021) The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018). Weather and Climate Dynamics 2(2):507–534

    Article  Google Scholar 

  • Rahn DA, Garreaud RD (2014) A synoptic climatology of the near-surface wind along the west coast of South America. Int J Climatol 34:780–792. https://doi.org/10.1002/joc.3724

    Article  Google Scholar 

  • Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Weather Rev 144(6):2351–2374

    Article  Google Scholar 

  • Reale M, Liberato ML, Lionello P, Pinto JG, Salon S, Ulbrich S (2019) A global climatology of explosive cyclones using a multi-tracking approach. Tellus A: Dynamic Meteorology and Oceanography 71(1):1611340

    Article  Google Scholar 

  • Reale M, Cabos Narvaez WD, Cavicchia L et al (2021) Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Clim Dyn. https://doi.org/10.1007/s00382-021-06018-x

    Article  Google Scholar 

  • Reboita MS, Nieto R, Gimeno L, Da Rocha RP, Ambrizzi T, Garreaud R, Krüger LF (2010) Climatological features of cutoff low systems in the Southern Hemisphere.Journal of Geophysical Research: Atmospheres, 115(D17)

  • Reboita MS, da Rocha RP, Ambrizzi T (2012) Dynamic and climatological features of cyclonic developments over southwestern South Atlantic Ocean. In: Veress B, Szigethy J (eds) Horizons in Earth Science Research, vol 6. Nova Science Publishers, Hauppauge, NY, USA, pp 135–160

    Google Scholar 

  • Reboita MS, da Rocha RP, Ambrizzi T, Gouveia CD (2015) Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Clim Dyn 45(7–8):1929–1944

    Article  Google Scholar 

  • Reboita MS, Veiga JAP (2017) Análise Sinótica e Energética de um VCAN que Causou Chuva no Deserto do Atacama em Março de 2015. Revista Brasileira de Meteorologia 32:123–139

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38(6):2866–2879

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Oliveira DMD (2019) Key features and adverse weather of the named subtropical cyclones over the Southwestern South. Atl Ocean Atmos 10(1):6. https://doi.org/10.3390/atmos10010006

    Google Scholar 

  • Reboita MS, Reale M, da Rocha RP et al (2020) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn. https://doi.org/10.1007/s00382-020-05317-z

    Article  Google Scholar 

  • Reboita MS, Crespo NM, Torres JA et al (2021) Future changes in winter explosive cyclones over the Southern Hemisphere domains from the CORDEX-CORE ensemble. Clim Dyn. https://doi.org/10.1007/s00382-021-05867-w

    Article  Google Scholar 

  • Rozante JR, Moreira DS, Gonçalves LGG, Vila DA (2010) Combining TRMM and Surface Observations of Precipitation: Technique and Validation Over South America. Weather Forecast 25:885–894

    Article  Google Scholar 

  • Rutllant J (1981) Subsidencia forzada sobre ladera andina occidental y su relación con un episodio de contaminación atmosférica en Santiago. Tralka 2(57):76

    Google Scholar 

  • Rutllant J, Garreaud R (1995) Meteorological air pollution potential for Santiago, Chile: towards an objective episode forecasting. Environ Monit Assess 34(3):223–244

    Article  Google Scholar 

  • Rutllant J, Garreaud R (2004) Episodes of strong flow down the western slope of the subtropical Andes. Mon Weather Rev 132(2):611–622

    Article  Google Scholar 

  • Saide PE, Carmichael GR, Spak SN, Gallardo L et al (2011) Forecasting urban PM10 and PM2. 5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model. Atmos Environ 45(16):2769–2780

    Article  Google Scholar 

  • Scaff L, Rutllant JA, Rahn D et al (2017) Meteorological interpretation of orographic precipitation gradients along an Andes west slope basin at 30 S (Elqui Valley, Chile). J Hydrometeorol 18(3):713–727

    Article  Google Scholar 

  • Schultz DM, Bosart LF, Colle BA et al (2019) Extratropical cyclones: a century of research on meteorology’s centerpiece. Meteorological Monogr 59:16–11

    Article  Google Scholar 

  • Seluchi ME (1995) Diagnóstico e pronóstico de situaciones sinópticas conducentes a desarrollos ciclónicos sobre el Este de Sudamérica, vol 34. Geofísica Internacional, México, pp 171–186

    Google Scholar 

  • Silva BA, Reboita MS, Crespo NM, da Rocha RP, Dutra LMM (2022) Ciclones Subtropicais Guará e Lexi Parte I: Estrutura Térmica e Características Gerais. Revista Brasileira de Geografia Física 15(1):333–342. https://doi.org/10.26848/rbgf.v15.1.p333-342

    Article  Google Scholar 

  • Simmonds I, Keay K (2000) Mean Southern Hemisphere Extratropical Cyclone Behavior in the 40-Year NCEP–NCAR Reanalysis. J Clim 13:873–885

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Teichmann C, Jacob D, Remedio AR et al (2021) Assessing mean climate change signals in the global CORDEX-CORE ensemble.Climate Dynamics1–24

  • Tozer CR, Kiem AS, Verdon-Kidd DC (2012) On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol Earth Syst Sci 16:1481–1499. DOI: https://doi.org/10.5194/hess-16-1481-2012

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Grieger J, Schuster M et al (2013) Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteorol Z 22(1):61–68

    Article  Google Scholar 

  • Valenzuela RA, Garreaud RD (2019) Extreme daily rainfall in central-southern Chile and its relationship with low-level horizontal water vapor fluxes. J Hydrometeorol 20(9):1829–1850

    Article  Google Scholar 

  • Vera CS, Vigliarolo PK (2000) A diagnostic study of cold-air outbreaks over South America. Mon Wea Rev 128:3–24

    Article  Google Scholar 

  • Vera CS, Vigiarolo PK, Berbery EH (2002) Cold season synoptic scale waves over subtropical South America. Mon Weather Rev 130(3):684–699

    Article  Google Scholar 

  • Yanase W, Niino H, Hodges K, Kitabatake N (2014) Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. J Clim 27(2):652–671. https://doi.org/10.1175/jcli-d-13-00153.1

    Article  Google Scholar 

Download references

Acknowledgements

This collaborative research is the product of a capacity building activity organized by CORDEX-WCRP to promote collaborative activities and networking and to enhance the capacity to document scientific research in Central America and the Caribbean, and South America with focus on specific regional climate phenomena (http://www.cima.fcen.uba.ar/cordex-2020/). The authors thank all the international centres that provided the datasets for this study and for the anonymous reviewers that made suggestions and comments to improve the quality of the paper. N.M.C, M.S.R, L.F.G., E.M.J. and R.P.R. thank CAPES, CNPq and PETROBRAS for the financial support. M.R. has been supported in this work by OGS and CINECA under HPC-TRES award number 2015-07 and by the project FAIRSEA (Fisheries in the Adriatic Region - a Shared Ecosystem. Approach) funded by the 2014 ‐ 2020 Interreg V‐A Italy ‐ Croatia CBC Programme (Standard project ID 10046951). M.L.Z. has been supported by the Chilean ANID Doctoral grant 21192178. L.F.T.R. has received funding support from FONDECYT through grant 1201742.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Natália Machado Crespo, Luiz Felippe Gozzo, Eduardo Marcos de Jesus, Miguel Ángel Lagos Zúñiga, José Abraham Torres Alavez and Limbert Fernando Torrez Rodriguez. The analyses were performed by Natália Machado Crespo, Michelle Simões Reboita and Luiz Felippe Gozzo. The first draft of the manuscript was written by Natália Machado Crespo, Michelle Simões Reboita, Luiz Felippe Gozzo, Miguel Ángel Lagos Zúñiga, Limbert Fernando Torrez Rodriguez and Marco Reale and all authors commented on previous versions of the manuscript. Rosmeri Porfirio da Rocha revised the manuscript. All authors read and approved the final manuscript.

Declarations.

Corresponding author

Correspondence to Natália Machado Crespo.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo, N.M., Reboita, M.S., Gozzo, L.F. et al. Assessment of the RegCM4-CORDEX-CORE performance in simulating cyclones affecting the western coast of South America. Clim Dyn 60, 2041–2059 (2023). https://doi.org/10.1007/s00382-022-06419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06419-6

Keywords

Navigation