Skip to main content

Advertisement

Log in

Summer temperature changes in Tierra del Fuego since AD 1765: atmospheric drivers and tree-ring reconstruction from the southernmost forests of the world

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Proxy climate records, such as those derived from tree rings, are necessary to extend relatively short instrumental meteorological observations into the past. Tierra del Fuego is the most austral territory with forests in the world, situated close to the Antarctic Peninsula, which makes this region especially interesting for paleoclimatic research. However, high-quality, high-resolution summer temperature reconstruction are lacking in the region. In this study we used 63 tree-ring width chronologies of Nothofagus pumilio and Nothofagus betuloides and partial least squares regression (PLSR) to produce annually resolved December-to-February temperature reconstruction. The resulting reconstruction extends back to AD 1765 and explains 37–50% of instrumental temperature variability. We found that observed summer temperature variability in Tierra del Fuego is primarily driven by the fluctuations of atmospheric pressure systems both in the South Atlantic and South Pacific, while it is insignificantly correlated to major hemispheric modes: El Niño–Southern Oscillation and Southern Annular Mode. This fact makes our reconstruction important for climate modelling experiments, as it represents specific regional variability. Our reconstruction can be used for direct comparison with model outputs to better understand model limitations or to tune a model. The reconstruction can contribute to larger scale reconstructions based on paleoclimatic data assimilation. Moreover, we showed that PLSR has improved performance over principal component regression (PCR) in the case of multiple tree-ring predictors. According to these results, PLSR may be a preferable method over PCR for the use in automated tree-ring based reconstruction approaches, akin widely used point-by-point regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets analysed in the current study are available from the corresponding author on reasonable request after consultation with the other authors who were responsible for the generation of the data sets.

References

  • Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev Comput Stat. https://doi.org/10.1002/wics.51

    Article  Google Scholar 

  • Alessandro AP (2008) Temperature and precipitation conditions in Argentina associated with strong westerly mid-latitute. Rev Bras Meteorol. https://doi.org/10.1590/s0102-77862008000200002

    Article  Google Scholar 

  • Aravena JC, Lara A, Wolodarsky-Franke A, Villalba R, Cuq E (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. Rev Chil Hist Nat. https://doi.org/10.4067/S0716-078X2002000200008

    Article  Google Scholar 

  • Bauwe A, Jurasinski G, Scharnweber T et al (2016) Impact of climate change on tree-ring growth of scots pine, common beech and pedunculate Oak in northeastern Germany. Iforest 9:1–11. https://doi.org/10.3832/ifor1421-008

    Article  Google Scholar 

  • Boninsegna JA, Keegan J, Jacoby GC, et al (1989) Dendrochronological studies in Tierra del Fuego, Argentina. In: Quaternary of South America and Antarctic Peninsula. pp 305–326

  • Boninsegna JA, Argollo J, Aravena JC et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228. https://doi.org/10.1016/j.palaeo.2009.07.020

    Article  Google Scholar 

  • Briffa KR, Jones PD, Wigley TML, Pilcher JR, Baillie MGL (1983) Climate reconstruction from tree rings: Part 1, basic methodology and preliminary results for England. J Climatol 3(3):233–242

    Article  Google Scholar 

  • Briffa KR, Melvin TM (2011) A closer look at regional curve standardization of tree-ring records: In: Justification of the need, a warning of some pitfalls, and suggested improvements in its application

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5(2):229–237

    Article  Google Scholar 

  • Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12:1145–1163

    Article  Google Scholar 

  • Cook ER, Seager R, Kushnir Y et al (2015) Old World megadroughts and pluvials during the Common Era. Sci Adv. https://doi.org/10.1126/sciadv.1500561

    Article  Google Scholar 

  • Cook ER (1985) A Time series analysis approach to tree ring standardization (dendrochronology, forestry, dendroclimatology, autoregressive process). Sch Renew Nat Resour.

  • Cook ER, Krusic PJ, Peters K, Holmes RL (2017) Program ARSTAN version 48d2, autoregressive tree–ring standardization program. Tree–Ring Laboratory of Lamont–Doherty Earth Observatory. http://www.ldeo.columbia.edu/tree-ringlaboratory/resources/software.

  • Cook ER, Solomina O, Matskovsky V et al (2020) The European Russia drought atlas (1400–2016 CE). Clim Dyn. https://doi.org/10.1007/s00382-019-05115-2

    Article  Google Scholar 

  • Dätwyler C, Grosjean M, Steiger NJ, Neukom R (2020) Teleconnections and relationship between the El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium. Clim Past. https://doi.org/10.5194/cp-16-743-2020

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude south pacific governed by coupling with the Southern Annular mode. J Clim. https://doi.org/10.1175/JCLI3671.1

    Article  Google Scholar 

  • Franco MG, Mundo IA, Pastur GJM, Barrera MD (2019) Radial growth responses to thinning and climate in native Nothofagus betuloides forests in Tierra del Fuego, Argentina. Dendrochronol 57:125625

    Article  Google Scholar 

  • Fuentes M, Aravena JC, Seim A, Linderholm HW (2019) Assessing the dendroclimatic potential of Nothofagus betuloides (Magellan’s beech) forests in the southernmost Chilean Patagonia. Trees Struct Funct 33:557–575. https://doi.org/10.1007/s00468-018-1801-1

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230. https://doi.org/10.1175/JCLI-D-12-00001.1

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta. https://doi.org/10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  • Grissino-Mayer H (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-ring Res.

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data. https://doi.org/10.1038/s41597-020-0453-3

    Article  Google Scholar 

  • Holmes RL (1983) Program COFECHA user’s manual. Laboratory of Tree-Ring Research. The University of Arizona, Tucson

  • Jacques-Coper M, Brönnimann S (2014) Summer temperature in the eastern part of southern South America: its variability in the twentieth century and a teleconnection with Oceania. Clim Dyn. https://doi.org/10.1007/s00382-013-2038-8

    Article  Google Scholar 

  • Jacques-Coper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol. https://doi.org/10.1002/joc.4120

    Article  Google Scholar 

  • Jacques-Coper M, Brönnimann S, Martius O et al (2016) Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int J Climatol. https://doi.org/10.1002/joc.4430

    Article  Google Scholar 

  • Kalela-Brundin M (1999) Climatic information from tree-rings of Pinus sylvestris L. and a reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene 9:59–77. https://doi.org/10.1191/095968399678118795

    Article  Google Scholar 

  • Llancabure JJ (2011) Relaciones entre el crecimiento de Nothofagus betuloides y el clima local y de gran escala en bosques subantárticos de la Isla Navarino. Tesis Ingeniero Forestal. Valdivia, Chile. Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile. 29 p.

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol. https://doi.org/10.1002/joc.1863

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim. https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

  • Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J Clim. https://doi.org/10.1175/JCLI3844.1

    Article  Google Scholar 

  • Massaccesi G, Roig FA, Martínez Pastur GJ, Barrera MD (2008) Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina. Trees Struct Funct. https://doi.org/10.1007/s00468-007-0181-8

  • Matskovsky V, Roig FA, Pastur GM (2019) Removal of a non-climatically induced seven-year cycle from Nothofagus pumilio tree-ring width chronologies from Tierra del Fuego, Argentina for their use in climate reconstructions. Dendrochronologia 57:125610. https://doi.org/10.1016/j.dendro.2019.125610

  • McCarroll D, Young GH, Loader NJ (2015) Measuring the skill of variance-scaled climate reconstructions and a test for the capture of extremes. Holocene 25(4):618–626

    Article  Google Scholar 

  • Meko D (1997) Dendroclimatic reconstruction with time varying predictor subsets of tree indices. J Clim. https://doi.org/10.1175/1520-0442(1997)010<0687:DRWTVP>2.0.CO;2

  • Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86

    Article  Google Scholar 

  • Morales MS, Cook ER, Barichivich J et al (2020) Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2002411117

    Article  Google Scholar 

  • Moy CM, Moreno PI, Dunbar RB, et al (2009) Climate change in southern South America during the last two millennia. In: Past climate variability in South America and surrounding regions. Springer, Dordrecht, 2009, pp 353–393.

  • Mundo IA, Palazzini DA, Barotto AJ, Martínez-Pastur GJ, Barrera MD (2020) Dendroecology applied to silvicultural management in the southern patagonian forests: a case study from an experimental forest in Tierra del Fuego, Argentina. In: Pompa-García M, Camarero JJ (eds) Latin american dendroecology. Springer, Cham, pp. 317–330

  • Neukom R, Luterbacher J, Villalba R et al (2011) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51. https://doi.org/10.1007/s00382-010-0793-3

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Paruelo JM, Jobbagy EG, Sala OE (1998) Biozones of Patagonia (Argentina). Ecol Aust 8(02):145–153

    Google Scholar 

  • Pedrera A, Galindo-Zaldívar J, Ruiz-Constán A, Bohoyo F, Torres-Carbonell P, Ruano P, Maestro A, González-Castillo L (2014) The last major earthquakes along the Magallanes-Fagnano fault system recorded by disturbed trees (Tierra del Fuego, South America). Terra Nova 26(6):448–453

    Article  Google Scholar 

  • Rabassa J, Heusser C, Rutter N (1989) Late-glacial and Holocene of argentine tierra del fuego. Quat South Am Antarct Peninsula 7:327–351

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos. https://doi.org/10.1029/2002jd002670

    Article  Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B et al (2019) Deep learning and process understanding for data-driven Earth system science. Nature. https://doi.org/10.1038/s41586-019-0912-1

    Article  Google Scholar 

  • Roig FA, Villalba R (2008) Understanding climate from Patagonian tree rings. In: Rabassa J (ed) Late Cenozoic of patagonia and tierra del fuego. Developments in Quaternary Sciences 11, pp 411–435.

  • Roig F, Roig C, Rabassa J, Boninsegna J (1996) Fuegian floating tree-ring chronology from subfossil Nothofagus wood. Holocene 6:469–476. https://doi.org/10.1177/095968369600600410

    Article  Google Scholar 

  • Roig FA, Palmer JG, Cook ER, Boswijk G, Stahle D, Villalba R, D’Arrigo RD (2010) Long tree-ring records from the southern hemisphere. In: Payette S, Filion L (eds) La dendroecologie: principes, methodes et applications. Les Presses de l’Université Laval, Québec, pp 647–682

    Google Scholar 

  • Slivinski LC, Compo GP, Whitaker JS et al (2019) Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3598

    Article  Google Scholar 

  • Soto-Rogel P, Aravena JC (2017) Potencial dendroclimático de Nothofagus betuloides en la Cordillera de Darwin, Tierra del Fuego. Chile Bosque (Valdivia). https://doi.org/10.4067/s0717-92002017000100016

    Article  Google Scholar 

  • Timilsena J, Piechota T (2008) Regionalization and reconstruction of snow water equivalent in the upper Colorado River basin. J Hydrol. https://doi.org/10.1016/j.jhydrol.2007.12.024

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim. https://doi.org/10.1175/1520-0442(2001)014%3c1697:LIOENO%3e2.0.CO;2

    Article  Google Scholar 

  • Villalba R, Lara A, Boninsegna JA et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232

    Article  Google Scholar 

  • Visbeck M (2009) A station-based southern annular mode index from 1884 to 2005. J Clim. https://doi.org/10.1175/2008JCLI2260.1

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol.

Download references

Acknowledgements

We are grateful to anonymous reviewers whose comments helped to improve the quality of the manuscript. VM acknowledges CONICET for a postdoctoral fellowship that partly supported this study. The first authors wish to thank Guillermo Martinez Pastur, Claudio A. Roig, Juan Andrés Miller, Polina Morozova, Yamina Micaela Rosas and Ricardo Vukasovic for their help during fieldwork. José Boninsenga, Juan Carlos Llancabure and other contributors of tree-ring chronologies from Tierra del Fuego are highly acknowledged. Fieldwork in Argentina was partly supported by the Russian State Assignment Project FMGE-2019-0004 (AAAA-A19-119022190172-5). Assessment of performance of different reconstruction methods was supported by the Russian Science Foundation grant no. 21-17-00264. This is a contribution to the project PUE-0091/2016-CONICET. The study was completed in the laboratory created by Megagrant project (agreement no. 075-15-2021-599, 08.06.2021).

Funding

The funding has been received from Russian Science Foundation with Grant no. 21-17-00264; Ministry of Education and Science of the Russian Federation with Grant no. FMGE-2019-0004; МЕГАГРАНТЫ with Grant no. 075-15-2021-599; Consejo Nacional de Investigaciones Científicas y Técnicas with Grant no. PUE-0091/2016-CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Matskovsky.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskovsky, V., Roig, F.A., Fuentes, M. et al. Summer temperature changes in Tierra del Fuego since AD 1765: atmospheric drivers and tree-ring reconstruction from the southernmost forests of the world. Clim Dyn 60, 1635–1649 (2023). https://doi.org/10.1007/s00382-022-06384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06384-0

Keywords

Navigation