Skip to main content

Advertisement

Log in

The predictability of snow depth at the North Hemisphere originated from persistence and oceanic forcing

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

As a vital source of the climate change predictability, the snow depth predictability originates from its own persistence and the external forcing factors. In order to investigate the root of snow depth predictability at the North Hemisphere, this study conducted an ensemble of 20 simulations spanning 50 years with the Community Earth System Model (CESM). With a regression model constructed via the canonical correlation analysis method, we analyzed the temporal and spatial distribution characteristics of snow depth predictability on the global scale, as well as the effects of snow depth persistence and sea surface temperature (SST) on snow depth predictability. The results show that the predictability due to snow depth persistence depends on both season and location. The persistence of snow depth can reach more than 3 months in high latitude region. After considering the SST forcing, the predictability is increased in many parts of the Northern Hemisphere, such as northern North America, Europe, and central Siberia. The areas where SST significantly influences snow depth predictability mainly overlap the snow cover transition zones. We further investigated the possible pathways of the impact of SST on snow depth predictability, and found that in North America and Europe, SST improves the predictability mainly through affecting the surface temperature, while in central Siberia and eastern Europe, the pathway also includes snowfall and shortwave radiation, respectively. Additionally, we conducted a similar analysis with three other climate models from the Atmospheric Model Intercomparison Project phase 6 (AMIP6), and the results can also verify the conclusions of CESM ensemble simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The AMIP6 model results can be achieved from https://esgf-node.llnl.gov/search/cmip6/, the JRA-55 Reanalysis data can be download at http://search.diasjp.net/en/dataset/JRA55, the CESM model code can be achieved from https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_2/, and the datasets used for running this model can be downloaded at https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/.

References

  • Allen RJ, Zender CS (2010) Effects of continental-scale snow albedo anomalies on the wintertime Arctic oscillation. J Geophys Res Atmos 115(D23105):1–20

    Google Scholar 

  • Allen RJ, Zender CS (2011) Forcing of the Arctic Oscillation by Eurasian snow cover. J Clim 24:6528–6539

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian Summer Monsoon: an observational study. J Clim 12:3117–3132

    Article  Google Scholar 

  • Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1988) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–686

    Article  Google Scholar 

  • Bednorz E (2004) Snow cover in eastern Europe in relation to temperature, precipitation and circulation. Int J Climatol 24:591–601

    Article  Google Scholar 

  • Boer GJ (2004) Long time-scale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44

    Article  Google Scholar 

  • Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, Bekki S, Bonnet R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Caubel A, Cheruy F, Codron F, Cozic A, Cugnet D, D'Andrea F, Davini P, de Lavergne C, Denvil S, Deshayes J, Devilliers M, Ducharne A, Dufresne J-L, Dupont E, Éthé C, Fairhead L, Falletti L, Flavoni S, Foujols M-A, Gardoll S, Gastineau G, Ghattas J, Grandpeix J-Y, Guenet B, Guez L, Guilyardi É, Guimberteau M, Hauglustaine D, Hourdin F, Idelkadi A, Joussaume S, Kageyama M, Khodri M, Krinner G, Lebas N, Levavasseur G, Lévy C, Li L, Lott F, Lurton T, Luyssaert S, Madec G, Madeleine J-B, Maignan F, Marchand M, Marti O, Mellul L, Meurdesoif Y, Mignot J, Musat I, Ottlé C, Peylin P, Planton Y, Polcher J, Rio C, Rochetin N, Rousset C, Sepulchre P, Sima A, Swingedouw D, Thiéblemont R, Traore AK, Vancoppenolle M, Vial J, Vialard J, Viovy N, Vuichard N (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. J Adv Model Earth Syst 12(7):1–52

    Article  Google Scholar 

  • Bradley RS, Diaz HF, Kiladis GN, Eischeid JK (1987) ENSO signal in continental temperature and precipitation records. Nature 327:497–501

    Article  Google Scholar 

  • Cassou C, Terray L (2001) Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys Res Lett 28:3195–3198

    Article  Google Scholar 

  • Clark MP, Serreze MC (2000) Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J Clim 13:3700–3710

    Article  Google Scholar 

  • Cohen J, Entekhabi D (1999) Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys Res Lett 26:345–348

    Article  Google Scholar 

  • Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4:689–706

    Article  Google Scholar 

  • Colman A, Davey M (1999) Prediction of summer temperature, rainfall and pressure in Europe from preceding winter North Atlantic Ocean temperature. Int J Climatol 19:513–536

    Article  Google Scholar 

  • Corti S, Molteni F, Branković Č (2000) Predictability of snow-depth anomalies over Eurasia and associated circulation patterns. Q J R Meteorol Soc 126:241–262

    Article  Google Scholar 

  • Cosgrove BA, Lohmann D, Mitchell KE, Houser PR, Wood EF, Schaake JC, Robock A, Sheffield J, Duan Q, Luo L (2003) Land surface model spin temperature. Int J Climatol 19:513–536

    Google Scholar 

  • Counillon F, Bethke I, Keenlyside N, Bentsen M, Bertino L, Zheng F (2014) Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment. Tellus a Dyn Meteorol Oceanogr 66:21074

    Article  Google Scholar 

  • Davy RJ, Troccoli A (2012) Interannual variability of solar energy generation in Australia. Sol Energy 86:3554–3560

    Article  Google Scholar 

  • Dewey KF (1977) Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon Weather Rev 105:1594–1597

    Article  Google Scholar 

  • Douville H, Royer JF (1996) Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Météo-France GCM. Clim Dyn 12:449–466

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958

    Article  Google Scholar 

  • Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler PJ, Hnilo JJ, Marlais SM (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Am Meteorol Soc 80:29–56

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2003) Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophys Res Lett 30(16):1–34

    Article  Google Scholar 

  • Groisman PY, Karl TR, Knight RW, Stenchikov GL (1994) Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J Clim 7:1633–1656

    Article  Google Scholar 

  • Halder S, Dirmeyer PA (2017) Relation of Eurasian snow cover and Indian Summer Monsoon rainfall: importance of the delayed hydrological effect. J Clim 30:1273–1289

    Article  Google Scholar 

  • Henderson GR, Peings Y, Furtado JC, Kushner PJ (2018) Snow–atmosphere coupling in the Northern Hemisphere. Nat Clim Chang 8:954–963

    Article  Google Scholar 

  • Hua W, Zhou L, Chen H, Nicholson SE, Jiang Y, Raghavendra A (2018) Understanding the Central Equatorial African long-term drought using AMIP-type simulations. Clim Dyn 50:1115–1128

    Article  Google Scholar 

  • Hunter T, Tootle G, Piechota T (2006) Oceanic–atmospheric variability and western US snowfall. Geophys Res Lett 33(L13706):1–5

    Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48

    Article  Google Scholar 

  • Kolstad EW (2017) Causal pathways for temperature predictability from snow depth. J Clim 30(23):9651–9663

    Article  Google Scholar 

  • Kunkel KE, Angel JR (1999) Relationship of ENSO to snowfall and related cyclone activity in the contiguous United States. J Geophys Res Atmos 104:19425–19434

    Article  Google Scholar 

  • Marshall S, Oglesby RJ, Nolin AW (2003) The predictability of winter snow cover over the Western United States. J Clim 16:1062–1073

    Article  Google Scholar 

  • McCoy DT, Eastman R, Hartmann DL, Wood R (2017) The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ERA-Interim. J Clim 30:3609–3620

    Article  Google Scholar 

  • Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656

    Article  Google Scholar 

  • Neale RB, Chen C-C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque J-F (2010) Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech Note NCAR/TN-486+ STR 1, pp 1–12

  • Nicolai-Shaw N, Gudmundsson L, Hirschi M, Seneviratne SI (2016) Long-term predictability of soil moisture dynamics at the global scale: persistence versus large-scale drivers. Geophys Res Lett 43:8554–8562

    Article  Google Scholar 

  • Norris JR, Leovy CB (1994) Interannual variability in stratiform cloudiness and sea surface temperature. J Clim 7:1915–1925

    Article  Google Scholar 

  • Oleson K, Lawrence D, Bonan G, Drewniak B, Huang M, Koven C, Levis S, Li F, Riley W, Subin Z (2013) Technical description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+ STR. National Center for Atmospheric Research, Boulder, CO. https://doi.org/10.5065/D6RR1W7M.

  • Orlowsky B, Seneviratne SI (2010) Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. J Clim 23:3918–3932

    Article  Google Scholar 

  • Patten JM, Smith SR, O’Brien JJ (2003) Impacts of ENSO on snowfall frequencies in the United States. Weather Forecast 18:965–980

    Article  Google Scholar 

  • Peings Y, Douville H, Alkama R, Decharme B (2011) Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Clim Dyn 37:985–1004

    Article  Google Scholar 

  • Peings Y, Douville H, Colin J, Martin DS, Magnusdottir G (2017) Snow–(N)AO teleconnection and its modulation by the quasi-biennial oscillation. J Clim 30:10211–10235

    Article  Google Scholar 

  • Prabhu A, Oh J, Kim I-W, Kripalani RH, Mitra AK, Pandithurai G (2017) Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic sea surface temperature and Arctic Oscillation. Clim Dyn 49:2545–2556

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Saito K, Cohen J (2003) The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys Res Lett 30(6):1–4

    Article  Google Scholar 

  • Schlosser CA, Dirmeyer PA (2001) Potential predictability of Eurasian snow cover. Atmos Sci Lett 2:1–8

    Article  Google Scholar 

  • Seager R, Kushnir Y, Nakamura J, Ting M, Naik N (2010) Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys Res Lett 37(L14703):1–6

    Google Scholar 

  • Shaman J, Tziperman E (2005) The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the South Asian Monsoons. J Clim 18:2067–2079

    Article  Google Scholar 

  • Smith SR, O’Brien JJ (2001) Regional snowfall distributions associated with ENSO: implications for seasonal forecasting. Bull Am Meteorol Soc 82:1179–1192

    Article  Google Scholar 

  • Sospedra-Alfonso R, Merryfield WJ (2018) Initialization and potential predictability of soil moisture in the Canadian seasonal to interannual prediction system. J Clim 31:5205–5224

    Article  Google Scholar 

  • Sospedra-Alfonso R, Merryfield WJ, Kharin VV (2016) Representation of snow in the Canadian seasonal to interannual prediction system. Part II: potential predictability and Hindcast skill. J Hydrometeorol 17:2511–2535

    Article  Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, von Salzen K, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873

    Article  Google Scholar 

  • Thakur B, Kalra A, Lakshmi V, Lamb KW, Miller WP, Tootle G (2020) Linkage between ENSO phases and western US snow water equivalent. Atmos Res 236:104827

    Article  Google Scholar 

  • Walland DJ, Simmonds I (1996) Modelled atmospheric response to changes in Northern Hemisphere snow cover. Clim Dyn 13:25–34

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic Press, New York

    Google Scholar 

  • Wu Q, Hu H, Zhang L (2011a) Observed influences of autumn–early winter Eurasian snow cover anomalies on the hemispheric PNA-like variability in winter. J Clim 24:2017–2023

    Article  Google Scholar 

  • Wu R, Liu G, Ping Z (2014) Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes. J Geophys Res Atmos 119:7410–7424

    Article  Google Scholar 

  • Wu R, Yang S, Liu S, Sun L, Lian Y, Gao Z (2011b) Northeast China summer temperature and North Atlantic SST. J Geophys Res Atmos 116(D16116):1–16

    Google Scholar 

  • Yang X, Lin Z, Wang Y, Chen H, Yue YU (2017a) Simulation and projection of snow water equivalent over the Eurasian continent by CMIP5 coupled models. Clim Environ Res 22(3):250–273

    Google Scholar 

  • Yang ZL, Dickinson RE, Hendersonue YU (2017b) Simulation and preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1 (a). J Geophys Res Atmos 100:16553–16578

    Article  Google Scholar 

  • Ye H, Bao Z (2001) Lagged teleconnections between snow depth in northern Eurasia, rainfall in Southeast Asia and sea-surface temperatures over the tropical Pacific Ocean. Int J Climatol 21:1607–1621

    Article  Google Scholar 

  • Yeh T-C, Wetherald RT, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snow-cover removal. Mon Weather Rev 111:1013–1024

    Article  Google Scholar 

  • Zampieri M, Scoccimarro E, Gualdi S (2013) Atlantic influence on spring snowfall over the Alps in the past 150 years. Environ Res Let 8:034026

    Article  Google Scholar 

  • Zhou C, Zelinka MD, Klein SA (2016) Impact of decadal cloud variations on the Earth’s energy budget. Nat Geosci 9:871–874

    Article  Google Scholar 

  • Zhu S, Chen H, Dong X, Wei J (2020) Influence of persistence and oceanic forcing on global soil moisture predictability. Clim Dyn 54:3375–3385

    Article  Google Scholar 

  • Zuo Z, Yang S, Hu Z-Z, Zhang R, Wang W, Huang B, Wang F (2013) Predictable patterns and predictive skills of monsoon precipitation in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Clim Dyn 40:3071–3088

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (42088101, 41625019, 42021004 and 41905075). We also thank the editor and the anonymous reviewers for their comments, which greatly helped improve the manuscript.

Funding

This work was funded by the National Natural Science Foundation of China (42088101, 41625019, 42021004 and 41905075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Chen.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8965 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Dong, X., Qi, Y. et al. The predictability of snow depth at the North Hemisphere originated from persistence and oceanic forcing. Clim Dyn 60, 945–958 (2023). https://doi.org/10.1007/s00382-022-06356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06356-4

Keywords

Navigation