Skip to main content

Advertisement

Log in

Western South Atlantic Climate Experiment (WeSACEx): extreme winds and waves over the Southeastern Brazilian sedimentary basins

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Extreme near-surface winds and ocean waves affect several activities over coastal and oceanic regions, such as offshore oil and gas industry, management of port operations, installation of renewable energy systems, and navigation. Our objective is to evaluate the ability of reanalysis/satellite data to reproduce local features of wind speed at 10 m height and significant wave height (SWH), and to assess the climatology (mean and extreme) of regional downscalings using WRF and RegCM4 for the atmosphere and WW3 for the ocean waves over the western South Atlantic. For the present climate, WRF and RegCM4 are forced by two CMIP5 global climate models (HadGEM2-ES and MPI-ESM-MR) and reanalysis, while WW3 is forced by the winds from the downscalings. We found that: (i) CCMP and WAVERYS have a more realistic representation of, respectively, the wind speed and SWH observed by buoys and platforms over the southeastern Brazilian basins; (ii) near the southeastern coast of Brazil, austral spring and winter have the more intense wind and wave extremes; (iii) RegCM4 and WRF present opposite biases over the southwestern South Atlantic, i.e., RegCM4 (WRF) overestimates (underestimates) the wind speed extremes, except for the region of Santos basin where both overestimate the extremes in austral summer and spring; and (iv) the SWH is closer to reanalysis when WW3 is forced by winds from WRF. This first assessment of the mean and extreme winds and oceanic waves from regional climate downscaling provides confidence and knowledge for further investigation on climate projections over the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Alves JHGM, Young IR (2003) On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data. Appl Ocean Res 25(4):167–186

    Article  Google Scholar 

  • Ambrizzi T, Reboita MS, da Rocha RP, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America. Ann NY Acad Sci 1436:98–120. https://doi.org/10.1111/nyas.13932

    Article  Google Scholar 

  • Ardhuin F, Rogers WE, Babanin AV, Filipot J, Magne R, Roland A et al (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40:1917–1941. https://doi.org/10.1175/2010JPO4324.1

    Article  Google Scholar 

  • Atlas R, Hoffman RN, Bloom SC, Jusem JC, Ardizzone J (1996) A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull Am Meteor Soc 77(5):869–882. https://doi.org/10.1175/1520-0477(1996)077%3c0869:AMGSWV%3e2.0.CO;2

    Article  Google Scholar 

  • Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteor Soc 92(2):157–174. https://doi.org/10.1175/2010BAMS2946.1

    Article  Google Scholar 

  • Babanin AV, Rogers WE, de Camargo R, Doble M, Durrant T et al (2019) Waves and swells in high wind and extreme fetches, measurements in the Southern Ocean. Front Mar Sci 6:361. https://doi.org/10.3389/fmars.2019.00361

    Article  Google Scholar 

  • Battjes JA, Janssen JPFM (1978) Energy loss and set-up due to breaking of random waves. Coastal Eng. https://doi.org/10.1061/9780872621909.034

    Article  Google Scholar 

  • Bitencourt DP, Gan MA, Acevedo OC, Fuentes MV, Muza MN, Rodrigues ML, Quadro MFL (2011) Relating winds along the Southern Brazilian Coast to extratropical cyclones. Met Apps 18(2):223–229. https://doi.org/10.1002/met.232

    Article  Google Scholar 

  • Bretherton CS, McCaa JR, Grenier H (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Mon Weather Rev 132(4):864–882

    Article  Google Scholar 

  • Caires S, Sterl A (2005) 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J Clim 18(7):1032–1048. https://doi.org/10.1175/jcli-3312.1

    Article  Google Scholar 

  • Campos RM, Parente CE, de Camargo R (2012) Extreme Wave Analysis in Campos Basin (Rio de Janeiro—Brazil) Associated with extra-tropical cyclones and anticyclones. In: XXXI OMAE, Rio de Janeiro, pp 71–80

  • Campos RM, Alves JHGM, Guedes Soares C, Guimaraes LG, Parente CE (2018) Extreme wind-wave modeling and analysis in the south Atlantic ocean. Ocean Model 124:75–93. https://doi.org/10.1016/j.ocemod.2018.02.002

    Article  Google Scholar 

  • Candella RN, Grossmann GS, Shaj Q (1999) Reconstituição de condições de ondas no oceano atlântico sul com a utilização de modelo de terceira geração. Revista Pesquisa Naval 12:123134

    Google Scholar 

  • Cardoso AA (2019) Ciclones subtropicais e ventos em superfície no sudoeste do Oceano Atlântico Sul: climatologia e extremos, (Master thesis). Teses e Dissertações USP. Universidade de São Paulo, São Paulo, SP

  • Cavalcanti IF, Kousky V (2009) Frentes frias sobre o Brasil. In: Cavalcanti IDA, Ferreira NJ, Da Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo

    Google Scholar 

  • Cavaleri L, Malanotte-Rizzoli P (1981) Wind-wave prediction in shallow water: theory and applications. J Geophys Res 86:10961–10973

    Article  Google Scholar 

  • Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year reanalysis using climate forecast system reanalysis winds. Ocean Modell 70:189–206

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR et al. (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN–464+STR. p 214

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of HadGEM2 model. Met Office Hadley Centre Technical Note No. HCTN 74, 47

  • Crespo NM, da Rocha RP, Sprenger M, Wernli H (2020) A potential vorticity perspective on cyclogenesis over centre-eastern South America. Int J Climatol. https://doi.org/10.1002/joc.6644

    Article  Google Scholar 

  • da Silva NP, de Camargo R (2018) Impact of wave number choice in spectral nudging applications during a south Atlantic convergence zone event. Front Earth Sci 6:232. https://doi.org/10.3389/feart.2018.00232

    Article  Google Scholar 

  • da Rocha RP, Sugahara S, da Silveira RB (2004) Sea waves generated by extratropical cyclones in the South Atlantic Ocean: hindcast and validation against altimeter data. Weather Forecast 19(2):398–410. https://doi.org/10.1175/1520-0434(2004)019%3c0398:SWGBEC%3e2.0.CO;2

    Article  Google Scholar 

  • da Rocha RP, Reboita MS, Dutra LMM, Llopart MP, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change 125(1):95–109. https://doi.org/10.1007/s10584-014-1119-y

    Article  Google Scholar 

  • de Jesus EM, da Rocha RP, Crespo NM, Reboita MS, Gozzo LF (2020) Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Clim Dyn. https://doi.org/10.1007/s00382-020-05490-1

    Article  Google Scholar 

  • de Jesus EM, da Rocha RP, Crespo NM, Reboita MS, Gozzo LF (2021) Future climate trends of subtropical cyclones in the South Atlantic basin in an ensemble of global and regional projections. Clim Dyn. https://doi.org/10.1007/s00382-021-05958-8

    Article  Google Scholar 

  • de Oliveira MMF, Ebecken NFF, de Oliveira JLF, Gilleland E (2011) Generalized extreme wind speed distributions in South America over the Atlantic Ocean Region. Theor Appl Climatol 104(3–4):377–385. https://doi.org/10.1007/s00704-010-0350-3

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dereczynski CP, Lopes ÍR, Carvalho NO, Silva MGAJ, Grossmann KS, Martins RP (2019) Climatology of Espírito Santo and the Northern Campos Basin Offshore Southeast Brazil. Anuário IGEO UFRJ 42(1):386–401. https://doi.org/10.11137/2019_1_386_401

    Article  Google Scholar 

  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Gozzo LF, da Rocha RP, Reboita MS, Sugahara S (2014) Subtropical cyclones over the southwestern South Atlantic: climatological aspects and case study. J Clim 27:8543–8562

    Article  Google Scholar 

  • Gramcianinov CB, Hodges KI, Camargo R (2019) The properties and genesis environments of South Atlantic cyclones. Clim Dyn 53:4115–4150. https://doi.org/10.1007/s00382-019-04778-1

    Article  Google Scholar 

  • Gramcianinov CB, Campos RM, Guedes Soares C, de Camargo R (2020) Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean Eng 213:107745. https://doi.org/10.1016/j.oceaneng.2020.107745

    Article  Google Scholar 

  • Gramcianinov CB, Campos RM, de Camargo R, Guedes Soares C (2021) Relation Between Cyclone Evolution and Fetch Associated With Extreme Wave Events in the South Atlantic Ocean. ASME J Offshore Mech Arct Eng 143(6):061202. https://doi.org/10.1115/1.4051038

    Article  Google Scholar 

  • Group TW (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810. https://doi.org/10.1175/1520-0485(1988)018%3c1775:TWMTGO%3e2.0.CO;2

    Article  Google Scholar 

  • Hasselmann S, Hasselmann K, Allender JH, Barnett TP (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, part II: parameterizations of the nonlinear energy transfer for application in wave models. J Phys Oceanogr 15:1378–1391

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Hong S-Y, Lim JOJ (2006) The WRF single–moment 6–class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on southern hemisphere storm tracks. J Clim 18(20):4108–4129. https://doi.org/10.1175/jcli3570.1

    Article  Google Scholar 

  • Innocentini V, Caetano Neto ES (1996) A case study of the 9 August 1988 South Atlantic storm: numerical simulations of the wave activity. Weather Forecast 11(1):78–88

    Article  Google Scholar 

  • Jimenez PA, Dudhia J, Gonzalez-Rouco JF, Navarro J, Montavez JP, Garcia-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918. https://doi.org/10.1175/MWR-D-11-00056.1

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models, meteorological monographs. American Meteorological Society, Boston. https://doi.org/10.1007/978-1-935704-13-3_16

    Chapter  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Clim 11(6), 1131–1149. http://www.jstor.org/stable/26242982

  • Krüger LF, da Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim Change 113:599–621

    Article  Google Scholar 

  • Law-Chune S, Aouf L, Dalphinet A, Levier B, Drillet Y, Drevillon M (2021) WAVERYS: a CMEMS global wave reanalysis during the altimetry period. Ocean Dyn 71:357–378. https://doi.org/10.1007/s10236-020-01433-w

    Article  Google Scholar 

  • Liu H, Shah S, Jiang W (2004) On-line outlier detection and data cleaning. Comput Chem Eng 28(9):1635–1647. https://doi.org/10.1016/j.compchemeng.2004.01.009

    Article  Google Scholar 

  • Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra S (2014) Climate change impact on precipitation for the Amazon and La Plata basin. Clim Change 125(1):1110125

    Article  Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran et al (2011) The HadGEM2 family of Met Office Unified Model Climate configurations. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-4-723-2011

  • Oleson K, Lawrence D (2013) NCAR/TN-503+STR Technical Note July 2013 Technical description of version 4.5 of the community Land Model (CLM), p 420

  • Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 636(105):29579–29594

    Article  Google Scholar 

  • Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorol App 6(2):119–132. https://doi.org/10.1017/S1350482799001103

    Article  Google Scholar 

  • Pampuch LA, Ambrizzi T (2005) Sistemas Frontais sobre a América do Sul Parte I: Climatologia e intervalo de passagem em dados da Reanálise I do NCEP/NCAR. Annals of IX Workshop Brasileiro de Micrometeorologia, Santa Maria-RS

  • Pereira HPP, Violante-Carvalho N, Nogueira ICM, Nogueira ICM, Babanin A, Liu Q, de Pinho UF, Nascimento F, Parente CE (2017) Wave observations from an array of directional buoys over the southern Brazilian coast. Ocean Dyn 67:1577–1591. https://doi.org/10.1007/s10236-017-1113-9

    Article  Google Scholar 

  • Pescio AE, Dragani WC, Martin PB (2021) Performance of surface winds from atmospheric reanalyses in the Southwestern South Atlantic Ocean. Int J Climatol. https://doi.org/10.1002/joc.7371

    Article  Google Scholar 

  • PNBOIA—Programa Nacional de Boias (2020). Available from: https://www.marinha.mil.br/chm/dados-do-goos-brasil/pnboia-mapa. Cited 01 Dec 2020

  • Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dyn 35(7–8):1331–1347. https://doi.org/10.1007/s00382-009-0668-7

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol. https://doi.org/10.1002/joc.5468

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Oliveira DM (2019) Key features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmosphere 6(10):1–21

    Google Scholar 

  • Reboita MS, Reale M, da Rocha RP, Giorgi F, Giuliani G, Coppola E, Nino RBL, Llopart M, Torres JA, Caravazos T (2021) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn 57:1533–1549. https://doi.org/10.1007/s00382-020-05317-z

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang HH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y, Chuang H, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  • Sinclair MR (1995) A climatology of cyclogenesis for the Southern Hemisphere. Mon Weather Rev 123:1601–1619

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG et al (2008) A Description of the advanced research WRF version 3 (No NCAR/TN-475+STR). Univ Corp Atmos Res. https://doi.org/10.5065/D68S4MVH

    Article  Google Scholar 

  • Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Model 75:65–83. https://doi.org/10.1016/j.ocemod.2013.12.006

    Article  Google Scholar 

  • Takbash A, Young IR, Breivik Ø (2019) Global wind speed and wave height extremes derived from long-duration satellite records. J Clim 32(1):109–126. https://doi.org/10.1175/JCLI-D-18-0520.1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15

  • Tiedke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon Weather Rev 124(4):745–750

    Article  Google Scholar 

  • Tolman HL (1991) A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J Phys Oceanogr 21(6):782–797. https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2

    Article  Google Scholar 

  • Tolman HL (2002a) Validation of WAVEWATCH III version 1.15 for global domain. SAIC-GSO/EMC/MMAB/NCEP/NOAA. Inhomogeneous depths and currents. J Phys Oceanogr 21(6):782–797

    Article  Google Scholar 

  • Tolman HL (2002b) Alleviating the garden sprinkler effect in wind wave models. Ocean Mod 4:269–289

    Article  Google Scholar 

  • Vinoth J, Young IR (2011) Global estimates of extreme wind speed and wave height. J Clim 24(6):1647–1665. https://doi.org/10.1175/2010jcli3680.1

    Article  Google Scholar 

  • Young IR, Donelan MA (2018) On the determination of global ocean wind and wave climate from satellite observations. Remote Sens Environ 215:228–241. https://doi.org/10.1016/j.rse.2018.06.006

    Article  Google Scholar 

  • Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440):548–552. https://doi.org/10.1126/science.aav9527

    Article  Google Scholar 

  • Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332(6028):451–455. https://doi.org/10.1126/science.1197219

    Article  Google Scholar 

  • Young IR, Vinoth J, Zieger S, Babanin AV (2012) Investigation of trends in extreme value wave height and wind speed. J Geophys Res 117:C0006. https://doi.org/10.1029/2011JC007753

    Article  Google Scholar 

  • Young IR, Sanina E, Babanin AV (2017) Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. J Atmos Ocean Technol 34:1285–1306. https://doi.org/10.1175/JTECH-D-16-0145.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the meteorological centers that provided data for this study. This work was supported by PETROBRAS (2017/00671-3), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants #430314/2018-3, #304949/2018-3).

Funding

(a) PETROBRAS (2017/00671-3). (b) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (001). (c) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (#430314/2018-3 #304949/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Machado Crespo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9165 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo, N.M., Silva, N.P., Palmeira, R.M.J. et al. Western South Atlantic Climate Experiment (WeSACEx): extreme winds and waves over the Southeastern Brazilian sedimentary basins. Clim Dyn 60, 571–588 (2023). https://doi.org/10.1007/s00382-022-06340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06340-y

Keywords

Navigation