Skip to main content

Advertisement

Log in

Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using different scenario experiments by the CESM2-WACCM model, the simulation and projection of the SSW and its impact on the near surface are explored as compared with the ERA5 and NCEP/NCAR reanalyses. The SSW frequency ranges from 4 to 7 per decade in CESM2-WACCM experiments (piControl, AMIP, historical, 1pctCO2, abrupt-4xCO2, SSP245, SSP585), comparable to ERA5 (6 per decade). Projected relative change in the displacement and split SSWs is much more uncertain due to the underestimation of the SSW frequency in the model and uncertainty in the greenhouse gas emission pathways. In all CO2 increase experiments, the downward propagation of annular stratospheric signals at short lags associated with displacement SSWs likely reinforces, whereas the downward coupling is projected to change little at long lags for displacements and at all lags for splits. CESM2-WACCM also projects a weakening of the wavenumber-2 forcing for split SSW in the future. Enhanced tropospheric negative annular mode response is projected at short lags for displacements in all future scenarios, and there is no significant enhancement of the negative NAO-like response to displacements at long lags. In contrast, the projected change in the tropospheric response to splits is zonally heterogenous at short lags, resembling a wave train pattern with the East Asian trough deepening, but the NAO-like response to splits at long lags is not projected to change significantly. The cold pattern over North Eurasia following displacement SSWs might expand further equatorward in the future projections, whereas cold anomalies over North America following splits might enhance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All CMIP6 data used in this study are publicly available.

References

  • Allen DR, Coy L, Eckermann SD, McCormack JP, Manney GL, Hogan TF, Kim YJ (2006) NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming. Mon Weather Rev 134(2):498–518

    Article  Google Scholar 

  • Ayarzagüena B et al (2018) No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos Chem Phys 18(15):11277–11287

    Article  Google Scholar 

  • Ayarzagüena B et al (2020) Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J Geophys Res Atmos 125(6):e2019DJ032345

    Article  Google Scholar 

  • Ayarzagüena B, Langematz U, Serrano E (2011) Tropospheric forcing of the stratosphere: a comparative study of the two different major stratospheric warmings in 2009 and 2010. J Geophys Res 116(D18):D18114

    Article  Google Scholar 

  • Ayarzagüena B, Langematz U, Meul S, Oberländer S, Abalichin J, Kubin A (2013) The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys Res Lett 40(10):2460–2465

    Article  Google Scholar 

  • Baldwin MP et al (2021) Sudden stratospheric warmings. Rev Geophys 59(1):e2020RG000708

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581–584

    Article  Google Scholar 

  • Baldwin MP, Thompson DWJ (2009) A critical comparison of stratosphere-troposphere coupling indices. Q J R Meteorol Soc 135(644):1661–1672

    Article  Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Science 301(5633):636–640

    Article  Google Scholar 

  • Bell CJ, Gray LJ, Kettleborough J (2010) Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Q J R Meteorol Soc 136(650):1181–1190

    Google Scholar 

  • Birner T, Albers JR (2017) Sudden stratospheric warmings and anomalous upward wave activity flux. Sola 13A:8–12

    Article  Google Scholar 

  • Butchart N, Austin J, Knight J, Scaife A, Gallani M (2000) The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J Clim 13:2142–2159

    Article  Google Scholar 

  • Butler AH, Polvani LM, Deser C (2013) Separating the stratospheric and tropospheric pathways of El Nino–Southern Oscillation teleconnections. Environ Res Lett 9(2):024014

    Article  Google Scholar 

  • Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96(11):1913–1928

    Article  Google Scholar 

  • Cao C, Chen Y-H, Rao J, Liu S-M, Li S-Y, Ma M-H, Wang Y-B (2019) Statistical characteristics of major sudden stratospheric warming events in CESM1-WACCM: a comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere 10(9):519

    Article  Google Scholar 

  • Chang L, Wu Z, Xu J (2021) Contribution of Northeastern Asian stratospheric warming to subseasonal prediction of the early winter haze pollution in Sichuan Basin, China. Sci Total Environ 751:141823

    Article  Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J Clim 20(3):449–469

    Article  Google Scholar 

  • Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118(6):2494–2505

    Article  Google Scholar 

  • Charlton-Perez AJ, Polvani LM, Austin J, Li F (2008) The frequency and dynamics of stratospheric sudden warmings in the 21st century. J Geophys Res 113(D16):D16116

    Article  Google Scholar 

  • Cohen J, Jones J (2011) Tropospheric precursors and stratospheric warmings. J Clim 24(24):6562–6572

    Article  Google Scholar 

  • Dai Y, Tan B (2016) The western Pacific pattern precursor of major stratospheric sudden warmings and the ENSO modulation. Environ Res Lett 11(12):124032

    Article  Google Scholar 

  • Domeisen DIV et al (2020) The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J Geophys Res Atmos 125(2):e2019JD030923

    Google Scholar 

  • Dong B, Sutton RT, Woollings T, Hodges K (2013) Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ Res Lett 8(3):4037

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Article  Google Scholar 

  • Gates WL et al (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Am Meteorol Soc 80(1):29–55

    Article  Google Scholar 

  • Gettelman A et al (2019) High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys Res Lett 46(14):8329–8337

    Article  Google Scholar 

  • Hall RJ, Mitchell DM, Seviour WJM, Wright CJ (2021) Persistent model biases in the CMIP6 representation of stratospheric polar vortex variability. J Geophys Res Atmos 126(12):e2021JD034759

    Article  Google Scholar 

  • Hansen F, Matthes K, Petrick C, Wang W (2014) The influence of natural and anthropogenic factors on major stratospheric sudden warmings. J Geophys Res Atmos 119(13):8117–8136

    Article  Google Scholar 

  • Harnik N (2002) The evolution of a stratospheric wave packet. J Atmos Sci 59(59):202–217

    Article  Google Scholar 

  • Hegyi BM, Deng Y, Black RX, Zhou R (2014) Initial transient response of the winter polar stratospheric vortex to idealized equatorial Pacific sea surface temperature anomalies in the NCAR WACCM. J Clim 27(7):59–68

    Article  Google Scholar 

  • Hersbach H et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Hoshi K, Ukita J, Honda M, Nakamura T, Yamazaki K, Miyoshi Y, Jaiser R (2019) Weak stratospheric polar vortex events modulated by the Arctic sea-ice loss. J Geophys Res Atmos 124(2):858–869

    Article  Google Scholar 

  • Hu JG, Ren RC, Xu HM (2014) Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J Atmos Sci 71(7):2319–2334

    Article  Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nio. Nat Geosci 2(1):32–36

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Woollen J (1996) The NCEP/NCAR reanalysis 40-year project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karpechko AY, Manzini E (2012) Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J Geophys Res Atmos 117(D5):D05133

    Article  Google Scholar 

  • Kim BM et al (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5:4646

    Article  Google Scholar 

  • Kim Y-J, Flatau M (2010) Hindcasting the January 2009 Arctic sudden stratospheric warming and its influence on the Arctic Oscillation with unified parameterization of orographic drag in NOGAPS. Part I: extended-range stand-alone forecast. Weather Forecast 25(6):1628–1644

    Article  Google Scholar 

  • Kim J, Son S-W, Gerber EP, Park H-S (2017) Defining sudden stratospheric warming in climate models: accounting for biases in model climatologies. J Clim 30(14):5529–5546

    Article  Google Scholar 

  • Knight J, Folland CK, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic Oscillation: past, present, and future. J Clim 22(5):1082–1103

    Article  Google Scholar 

  • Kodera K (2006) Influence of stratospheric sudden warming on the equatorial troposphere. Geophys Res Lett 33(6):178–196

    Article  Google Scholar 

  • Kodera K, Mukougawa H, Fujii A (2013) Influence of the vertical and zonal propagation of stratospheric planetary waves on tropospheric blockings. J Geophys Res Atmos 118(15):8333–8345

    Article  Google Scholar 

  • Kodera K, Mukougawa H, Maury P, Ueda M, Claud C (2016) Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. J Geophys Res Atmos 121(1):80–94

    Article  Google Scholar 

  • Kohma M, Sato K (2015) Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings. J Geophys Res Atmos 119(17):10100–110113

    Article  Google Scholar 

  • Kretschmer M, Cohen J, Matthias V, Runge J, Coumou D (2018) The different stratospheric influence on cold-extremes in Eurasia and North America. npj Clim Atmos Sci 1(1):44

    Article  Google Scholar 

  • Kuroda Y, Kodera K (2001) Variability of the polar night jet in the Northern and Southern Hemispheres. J Geophys Res Atmos 106(D18):20703–20713

    Article  Google Scholar 

  • Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim 17(13):2584–2596

    Article  Google Scholar 

  • Liu S-M, Chen Y-H, Rao J, Cao C, Li S-Y, Ma M-H, Wang Y-B (2019) Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere 10(11):679

    Article  Google Scholar 

  • Lu Q, Rao J, Guo D, Yu M, Yu Y (2021) Downward propagation of sudden stratospheric warming signals and the local environment in the Beijing–TianjinHebei region: a comparative study of the 2018 and 2019 winter cases. Atmos Res 254(5542):105514

    Article  Google Scholar 

  • Luo D, Diao Y, Feldstein SB (2011) The variability of the Atlantic Storm Track and the North Atlantic Oscillation: a link between intraseasonal and interannual variability. J Atmos Sci 68(3):577–601

    Article  Google Scholar 

  • Manney GL et al (2008) The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J Geophys Res Atmos 113(D11):D11155

    Article  Google Scholar 

  • Manney GL et al (2009) Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys Res Lett 36(12):L12815

    Article  Google Scholar 

  • Manney GL et al (2020) Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys Res Lett 47(16):e2020GL089063

    Article  Google Scholar 

  • Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J Geophys Res Atmos 119(13):7979–7998

    Article  Google Scholar 

  • Martius O, Polvani LM, Davies HC (2009) Blocking precursors to stratospheric sudden warming events. Geophys Res Lett 36(14):L14806

    Article  Google Scholar 

  • Matsuno T (1970) Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J Atmos Sci 27(6):871–883

    Article  Google Scholar 

  • Matthewman NJ, Esler JG (2011) Stratospheric sudden warmings as self-tuning resonances. Part I: vortex splitting events. J Atmos Sci 68(11):2481–2504

    Article  Google Scholar 

  • McIntyre ME (2007) How well do we understand the dynamics of stratospheric warmings? J Meteorol Soc Jpn 60(1):37–65

    Article  Google Scholar 

  • McLandress C, Shepherd TG (2009) Impact of climate change on stratospheric sudden warmings as simulated by the Canadian middle atmosphere model. J Clim 22(20):5449–5463

    Article  Google Scholar 

  • Mitchell DM, Osprey SM, Gray LJ, Butchart N, Hardiman SC, Charlton-Perez AJ, Watson P (2012) The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J Atmos Sci 69(8):2608–2618

    Article  Google Scholar 

  • Mitchell DM, Gray LJ, Anstey J, Baldwin MP, Charlton-Perez AJ (2013) The influence of stratospheric vortex displacements and splits on surface climate. J Clim 26(8):2668–2682

    Article  Google Scholar 

  • Naito Y, Taguchi M, Yoden S (2003) A parameter sweep experiment on the effects of the equatorial QBO on stratospheric sudden warming events. J Atmos Sci 60(11):1380–1394

    Article  Google Scholar 

  • Nath D, Chen W, Wang L, Ma Y (2014) Planetary wave reflection and its impact on tropospheric cold weather over Asia during January 2008. Adv Atmos Sci 31(4):851–862

    Article  Google Scholar 

  • Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys Res Lett 37(13):L13805

    Article  Google Scholar 

  • Nishii K, Nakamura H, Orsolini YJ (2011) Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J Clim 24(24):6408–6423

    Article  Google Scholar 

  • O’Callaghan A, Joshi M, Stevens D, Mitchell D (2014) The effects of different sudden stratospheric warming types on the ocean. Geophys Res Lett 41(21):7739–7745

    Article  Google Scholar 

  • Osprey SM, Gray LJ, Hardiman SC, Butchart N, Hinton TJ (2013) Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office Climate model: high top versus low top. J Clim 26(5):1595–1606

    Article  Google Scholar 

  • Rao J, Garfinkel CI (2021) CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environ Res Lett 16(3):034024

    Article  Google Scholar 

  • Rao J, Ren R (2016) A decomposition of ENSO’s impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical. Indian Ocean Clim Dyn 46(11–12):3689–3707

    Article  Google Scholar 

  • Rao J, Ren R (2020) Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO. Clim Dyn 54(3–4):2249–2266

    Article  Google Scholar 

  • Rao J, Ren R, Chen H, Yu Y, Zhou Y (2018) The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J Geophys Res Atmos 123(23):13332–13345

    Article  Google Scholar 

  • Rao J, Ren R, Chen H, Liu X, Yu Y, Yang Y (2019) Sub-seasonal to seasonal hindcasts of stratospheric sudden warming by BCC_CSM1.1(m): a comparison with ECMWF. Adv Atmos Sci 36(5):479–494

    Article  Google Scholar 

  • Rao J, Ren R, Xia X, Shi C, Guo D (2019b) Combined impact of El Niño–Southern Oscillation and Pacific Decadal Oscillation on the northern winter stratosphere. Atmosphere 10(4):211

    Article  Google Scholar 

  • Rao J, Garfinkel CI, White IP (2020) Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J Geophys Res Atmos 125(2):e2019JD031919

    Article  Google Scholar 

  • Rao J, Garfinkel CI, White IP, Schwartz C (2020) The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models. J Geophys Res Atmos 125(14):e2020JD032723

    Article  Google Scholar 

  • Rao J, Liu S, Chen Y (2021) Northern Hemisphere sudden stratospheric warming and its downward impact in four Chinese CMIP6 models. Adv Atmos Sci 38(2):187–202

    Article  Google Scholar 

  • Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5(11):783–787

    Article  Google Scholar 

  • Ren RC, Cai M (2007) Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys Res Lett 34(7):L07704

    Article  Google Scholar 

  • Schoeberl MR, Hartmann DL (1991) The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251(4989):46–52

    Article  Google Scholar 

  • Seviour WJM, Mitchell DM, Gray LJ (2013) A practical method to identify displaced and split stratospheric polar vortex events. Geophys Res Lett 40(19):5268–5273

    Article  Google Scholar 

  • Seviour WJM, Gray LJ, Mitchell DM (2016) Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J Geophys Res Atmos 121(4):1400–1413

    Article  Google Scholar 

  • Shen X, Wang L, Osprey S (2020) Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophys Res Lett 47(20):e2020GL089343

    Article  Google Scholar 

  • Siskind DE, Eckermann SD, Coy L, Mccormack JP, Randall CE (2007) On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent. Geophys Res Lett 34(9):252–254

    Article  Google Scholar 

  • Taguchi M (2014) Predictability of major stratospheric sudden warmings of the vortex split type: case study of the 2002 southern event and the 2009 and 1989 northern events. J Atmos Sci 71(8):2886–2904

    Article  Google Scholar 

  • Taguchi M (2016) Predictability of major stratospheric sudden warmings: Analysis results from JMA operational 1-month ensemble predictions from 2001/02 to 2012/13. J Atmos Sci 73(2):789–806

    Article  Google Scholar 

  • Taguchi M (2018) Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. J Geophys Res Atmos 123(18):10231–10247

    Article  Google Scholar 

  • Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J Clim 15(12):1421–1428

    Article  Google Scholar 

  • Tripathi OP et al (2016) Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Mon Weather Rev 144(5):1935–1960

    Article  Google Scholar 

  • Wang J, Jiang X, Olsen ET, Pagano T, Chen LL, Yung YL (2013) Influence of stratospheric sudden warming on AIRS midtropospheric CO2. J Atmos Sci 70(8):2566–2573

    Article  Google Scholar 

  • Wang S, Chen W, Chen S, Ding S (2020) Interdecadal change in the North Atlantic storm track during boreal summer around the mid-2000s: role of the atmospheric internal processes. Clim Dyn 55(7–8):1929–1944

    Article  Google Scholar 

  • White I, Garfinkel CI, Gerber EP, Jucker M, Aquila V, Oman LD (2019) The downward influence of sudden stratospheric warmings: association with tropospheric precursors. J Clim 32(1):85–108

    Article  Google Scholar 

  • White IP, Garfinkel CI, Cohen J, Jucker M, Rao J (2021) The impact of split and displacement sudden stratospheric warmings on the troposphere. J Geophys Res Atmos 126(8):e2020JD033989

    Article  Google Scholar 

  • Woollings T, Charlton-Perez A, Ineson S, Marshall AG, Masato G (2010) Associations between stratospheric variability and tropospheric blocking. J Geophys Res 115(D6):D06108

    Google Scholar 

  • Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12(11):5259–5273

    Article  Google Scholar 

  • Zhang RH, Tian WS, Zhang JK, Huang JL, Xie F, Xu M (2019) The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular Mode anomalies. J Clim 32(6):1857–1873

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank ECMWF (https://cds.climate.copernicus.eu) for their providing the ERA5 reanalysis data and NCEP/NCAR (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) for providing the reanalysis data. We acknowledge the High Performance Computing Center of Nanjing University of Information Science & Technology for their support of this work. The authors thank the ESGF (https://esgf-node.llnl.gov/projects/esgf-llnl/) for their freely providing the CMIP6 simulations.

Funding

This work was supported by the National Natural Science Foundation of China (nos. 42175069, 91837311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Rao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Rao, J., Guo, D. et al. Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Clim Dyn 59, 3741–3761 (2022). https://doi.org/10.1007/s00382-022-06293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06293-2

Keywords

Navigation