Skip to main content
Log in

Surface and atmospheric patterns for early and late rainy season onset years in South America

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The biosphere–atmosphere interactions associated with the rainy season onset in South America (SA) are not well understood. This study aimed to analyze the atmospheric and surface patterns associated with early, neutral, and late rainy season onset in tropical regions of SA. The following years represented each rainy season onset: 1998, 2006, 2009 (early), 2001, 2004, 2005 (neutral), 2000, 2007, 2008 (late). The early (late) onset were negative (positive) rainy season onset date anomalies in comparison to the climatological mean (1998–2016) over central SA. Distinct atmospheric conditions were identified in the early and late rainy season onset. In the early onset, the northwesterly moisture flux and moisture advection were higher than average over central-east SA, where the precipitation increased. In the late onset, precipitation was enhanced in northwest SA and the configuration of multiple atmospheric blocking episodes contributed to delay the rainy season onset. Surface conditions also contributed to both the early/late rainy season onset. In the early onset, wetter and cooler pre-onset conditions over the central-east SA were verified. In the late onset, surface conditions were dry and warm before onset. Even though the atmospheric instability was promoted by the increase in sensible heating, dry atmospheric conditions were not favorable to deep convection, thus delaying the onset. These findings highlight how the onset variability promotes different atmospheric and surface patterns in SA. The results will contribute to the development of weather and climate models to better represent the rainy season onset focusing on biosphere–atmosphere processes improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The following datasets analyzed during the current study are available in: RADS, ERA5, ERA5-Land and GPCP.

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Bombardi RJ, Carvalho LM, Jones C, Reboita MS (2014) Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Clim Dyn 42(5–6):1553–1568

    Article  Google Scholar 

  • Bombardi RJ, Kinter JL III, Frauenfeld OW (2019) A global gridded dataset of the characteristics of the rainy and dry seasons. Bull Am Meteorol Soc 100(7):1315–1328

    Article  Google Scholar 

  • Boschat G, Simmonds I, Purich A, Cowan T, Pezza AB (2016) On the use of composite analyses to form physical hypotheses: an example fheatwavewave–SST associations. Sci Rep 6(1):1–10

    Google Scholar 

  • Carvalho LM, Jones C, Posadas AN, Quiroz R, Bookhagen B, Liebmann B (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Clim 25(13):4600–4620

    Article  Google Scholar 

  • Cavalcanti IFA, Raia A (2017) Lifecycle of South American Monsoon System simulated by CPTEC/INPE AGCM. Int J Climatol 37(51):878–896. https://doi.org/10.1002/joc.5044

    Article  Google Scholar 

  • Chen CT, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21(7):1605–1621

    Article  Google Scholar 

  • Collini EA, Berbery EH, Barros VR, Pyle ME (2008) How does soil moisture influence the early stages of the South American monsoon? J Clim 21(2):195–213

    Article  Google Scholar 

  • Correia FWS, Manzi AO, Cândido LA, Santos RMND, Pauliquevis T (2007) Balanço de umidade na Amazônia e sua sensibilidade às mudanças na cobertura vegetal. Ciência e Cultura 59(3):39–43

    Google Scholar 

  • Damião Mendes MC, Cavalcanti IFDA, Trigo RM, Mendes D, Dacamara CDC, Aragão MRDS (2009) Episódios de bloqueios no hemisfério sul: comparação entre reanálises do NCEP/NCAR e modelo HADCM3. Revista Brasileira De Meteorologia 24:262–275

    Article  Google Scholar 

  • Franchito SH, Brahmananda Rao V, Gan MA, Santo CME (2010) Onset and end of the rainy season and corn yields in São Paulo State. Brazil Geofísica Internacional 49(2):69–76

    Google Scholar 

  • Fu R, Li W (2004) The influence of the land surface on the transition from dry to wet season in Amazonia. Theor Appl Climatol 78(1):97–110

    Google Scholar 

  • Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J Clim 17(1):47–66

    Article  Google Scholar 

  • Garcia SR (2010) Sistema de monção da América do Sul: início e fim da estação chuvosa e sua relação com a Zona de Convergência Intertropical do Atlântico. Tese (Doutorado em Meteorologia) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2010, p 230. http://urlib.net/8JMKD3MGP8W/36STS88

  • Grimm AM (2004) How do La Niña events disturb the summer monsoon system in Brazil? Clim Dyn 22(2):123–138

    Article  Google Scholar 

  • Hersbach H, Bell W, Berrisford P, Horányi AJMS, Nicolas J, Radu R, Schepers D, Simmons A, Soci C, Dee D (2019) Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newslett 159:17–24

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Jones C, Carvalho LM, Liebmann B (2012) Forecast skill of the South American monsoon system. J Clim 25(6):1883–1889

    Article  Google Scholar 

  • Kodama Y (1992) Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: characteristics of subtropical frontal zones. J Meteorol Soc Jpn Ser II 70(4):813–836

    Article  Google Scholar 

  • Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Revista Brasileira De Meteorologia 3(1):217–231

    Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54(5):656–678

    Article  Google Scholar 

  • Liebmann B, Marengo J (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14(22):4308–4318

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Kousky VE, Filizola NP, Wainer IC (2001) Onset and end of the rainy season in the Brazilian Amazon Basin. J Clim 14(5):833–852

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PD, Cavalcanti IFA et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Seluchi ME, Cuartas A, Alves LM, Mendiondo EM et al (2015) A seca e a crise hídrica de 2014–2015 em São Paulo. Revista USP 106:31–44

    Article  Google Scholar 

  • Mendes MC, Cavalcanti IFA (2014) The relationship between the Antarctic oscillation and blocking events over the South Pacific and Atlantic Oceans. Int J Climatol 34(3):529–544

    Article  Google Scholar 

  • Mendes MCD, Trigo RM, Cavalcanti IF, DaCamara CC (2008) Blocking episodes in the Southern Hemisphere: impact on the climate of adjacent continental areas. Pure Appl Geophys 165(9):1941–1962

    Article  Google Scholar 

  • Mendes MCD, Cavalcanti IF, Herdies DL (2012) Southern Hemisphere atmospheric blocking diagnostic by ECMWF and NCEP/NCAR data. Revista Brasileira De Meteorologia 27(3):263–271

    Article  Google Scholar 

  • Minuzzi RB, Sediyama GC, Barbosa EDM, Melo Júnior JCFD (2007) Climatologia do comportamento do período chuvoso da região sudeste do Brasil. Revista Brasileira De Meteorologia 22:338–344

    Article  Google Scholar 

  • Muñoz SJ (2019) ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 10

  • Nieto-Ferreira R, Rickenbach TM (2011) Regionality of monsoon onset in South America: a three-stage conceptual model. Int J Climatol 31(9):1309–1321

    Article  Google Scholar 

  • Oliveira FN, Carvalho LM, Ambrizzi T (2014) A new climatology for Southern Hemisphere block in the winter and the combined effect of ENSO and SAM phases. Int J Climatol 34(5):1676–1692

    Article  Google Scholar 

  • Oliveira FNMD (2011) Climatologia de Bloqueios Atmosféricos no Hemisfério Sul: observações, simulações do clima do século XX e cenários futuros de mudanças climáticas (Doctoral dissertation, Universidade de São Paulo)

  • Pirasteh-Anosheh H, Saed-Moucheshi A, Pakniyat H, Pessarakli M (2016) Stomatal responses to drought stress. Water stress and crop plants: a sustainable approach 1(2):24–40

  • Raia A, Cavalcanti IFA (2008) The life cycle of the South American monsoon system. J Clim 21(23):6227–6246

    Article  Google Scholar 

  • Resende NC, Miranda JH, Cooke R, Chu ML, Chou SC (2019) Impacts of regional climate change on the runoff and root water uptake in corn crops in Parana, Brazil. Agric Water Manag 221:556–565

    Article  Google Scholar 

  • Rodrigues RR, Woollings T (2017) Impact of atmospheric blocking on South America in austral summer. J Clim 30(5):1821–1837

    Article  Google Scholar 

  • Silva DA, Dottori M (2021) The atmospheric blocking influence over the South Brazil Bight during the 2013–2014 summer. Reg Stud Mar Sci 45:101815

    Google Scholar 

  • Silva AB (2012) Influência dos fluxos de calor em superfície no início e no final da estação chuvosa sobre a região centro-oeste do Brasil. Dissertação (Mestrado em Meteorologia)—Instituto Nacional de Pesquisas Espaciais, São José dos Campos

  • Tedeschi RG, Cavalcanti IF, Grimm AM (2013) Influences of two types of ENSO on South American precipitation. Int J Climatol 33(6):1382–1400

    Article  Google Scholar 

  • Trigo RM, Trigo IF, DaCamara CC, Osborn TJ (2004) Climate impact of the European winter blocking episodes from the NCEP/NCAR reanalyses. Clim Dyn 23(1):17–28

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D et al (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000

    Article  Google Scholar 

  • Von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press

    Google Scholar 

  • Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37(5):941–955

    Article  Google Scholar 

  • Wright JS, Fu R, Worden JR, Chakraborty S, Clinton NE, Risi C et al (2017) Rainforest-initiated wet season onset over the southern Amazon. Proc Natl Acad Sci 114(32):8481–8486

    Article  Google Scholar 

  • Xie P, Chen M, Yang S, Yatagai A, Hayasaka T, Fukushima Y, Liu C (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8(3):607–626

    Article  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040

    Article  Google Scholar 

  • Zhou J, Lau KM (2001) Principal modes of interannual and decadal variability of summer rainfall over South America. Int J Climatol 21(13):1623–1644

    Article  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for providing valuable comments and suggestions that contributed to improving the quality of this manuscript. We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). ILT was supported by CAPES (process 88887.354679/2019-00). Acknowledgments also to CLIMAX-FAPESP-Belmont-2015/50687-8. IFAC thanks CNPq- Project 306393/2018-2. We thank CPTEC/INPE for the technical and infrastructure support related to the Post-Graduation Program.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. ILT was supported by CAPES (process 88887.354679/2019-00). This study was also financed in part by CLIMAX-FAPESP-Belmont-2015/50687-8. IFAC thanks CNPq- Project 306393/2018-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella L. Talamoni.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talamoni, I.L., Cavalcanti, I.F.A., Kubota, P.Y. et al. Surface and atmospheric patterns for early and late rainy season onset years in South America. Clim Dyn 59, 2815–2830 (2022). https://doi.org/10.1007/s00382-022-06234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06234-z

Keywords

Navigation