Skip to main content

Advertisement

Log in

Temporal downscaling of daily precipitation to 10 min data for assessment of climate change impact on floods in small-size watersheds applied to Jinju, South Korea

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The earth system model (ESM) mostly provides an output of hydrological variables at a daily scale, such as precipitation. Finer temporal scale data of precipitation is required for assessing the impact of climate change on floods, especially in small-size urban and mountainous watersheds which are vulnerable to floods. This study enhanced population-based nonparametric temporal downscaling (PNTD) to downscale daily precipitation to 10-min precipitation (P10M), and tested it in the Jinju area, South Korea, that includes both urban and mountainous areas. Results indicated that the enhanced PNTD model reproduced the key statistics of the P10M data and the statistical characteristics of extreme events represented by the annual maximum precipitation (AMP) series of different durations. Also, the daily precipitation of 19 ESMs with the base and future scenarios, called shared socio-economic pathways, for 245 and 585 conditions were applied and downscaled to P10M data. It was found that the future P10M precipitation scenarios were downscaled satisfactorily by preserving the difference between base and future scenarios of the AMP data. Also, results showed that the uncertainty from ESMs was about 10 times larger than from temporal downscaling and it indicated that the uncertainty in temporal downscaling can be acceptable. The P10M data can be employed for deriving intensity–duration–frequency curves needed for designing urban drainage systems and other hydraulic and hydrologic structures and for installing flood warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All the ESMs can be accessible from the website and related references are mentioned in the manuscript.

Abbreviations

AMP:

Annual maximum precipitation

BC:

Bias-correction

ESM:

Earth system model

GA:

Genetic algorithm

GCM:

General circulation model

IDF:

Intensity-duration frequency

KNNR:

K-nearest neighbor resampling

MPGA:

M-day pseudo-population generating algorithm

NTD:

Nonparametric temporal downscaling

P10M:

10 min precipitation

PEE:

Precipitation event extraction

PNTD:

Population-based nonparametric temporal downscaling

QDM:

Quantile delta mapping

QM:

Quantile mapping

SSP:

Shared socio-economic pathways

References

  • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10):1–16

    Article  Google Scholar 

  • Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Change 15(2):77–86

    Article  Google Scholar 

  • Arnell NW, Gosling SN (2016) The impacts of climate change on river flood risk at the global scale. Clim Change 134(3):387–401

    Article  Google Scholar 

  • Asch RG, Pilcher DJ, Rivero-Calle S, Holding MJ (2016) Demystifying models: answers to ten common questions that ecologists have about earth system models. Limnol Oceanogr Bull 25(3):65–70

    Article  Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27(12):1643–1655

    Article  Google Scholar 

  • Boucher O, Denvil S, Levavasseur G, Cozic A, Caubel A, Foujols M-A, Meurdesoif Y, Cadule P, Devilliers M, Dupont E, Lurton T (2019) IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Byun Y-H, Lim Y-J, Sung HM, Kim J, Sun M, Kim B-H (2019) NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP amip. Earth System Grid Federation

  • Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959

    Article  Google Scholar 

  • Chen GF, Qin DY, Ye R, Guo YX, Wang H (2011) A new method of rainfall temporal downscaling: a case study on sanmenxia station in the Yellow River Basin. Hydrol Earth Syst Sci Discuss 8(2):2323–2344

    Google Scholar 

  • Chen H, Xu C-Y, Guo S (2012) Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J Hydrol 434:36–45

    Article  Google Scholar 

  • Cheng C (2016) Spatial climate justice and green infrastructure assessment: a case for the Huron River watershed Michigan, USA. GI_Forum 1179-190

  • Cheng L, Aghakouchak A (2014) Nonstationary precipitation intensity–duration–frequency curves for infrastructure design in a changing climate. Sci Rep 4(7093):1–6

    Google Scholar 

  • Cheng C, Yang YCE, Ryan R, Yu Q, Brabec E (2017) Assessing climate change-induced flooding mitigation for adaptation in Boston’s Charles River watershed, USA, Landscape and Urban Planning 16725-36

  • Consortium ECE (2019) EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Coulibaly P, Dibike YB, Anctil F (2005) Downscaling precipitation and temperature with temporal neural networks. J Hydrometeorol 6(4):483–496

    Article  Google Scholar 

  • Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, Mackallah C, Marsland S, O'Farrell S, Rashid H, Srbinovsky J, Sullivan A, Trenham C, Vohralik P, Watterson I, Williams G, Woodhouse M, Bodman R, Dias FB, Domingues C, Hannah N, Heerdegen A, Savita A, Wales S, Allen C, Druken K, Evans B, Richards C, Ridzwan SM, Roberts D, Smillie J, Snow K, Ward M, Yang R (2019) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Pub. Co., Reading, p 432

    Google Scholar 

  • Good P, Sellar A, Tang Y, Rumbold S, Ellis R, Kelley D, Kuhlbrodt T, Walton J (2019) MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Green JH, Xuereb K, Siriwardena L (2011) Establishment of a quality controlled rainfall database for the revision of the intensity-frequency-duration (IFD) estimates for Australia. In: 34th IAHR world congress, IAHR, Brisbane, Australia, pp 154–161

  • Gutjahr O, Putrasahan D, Lohmann K, Jungclaus JH, Von Storch JS, Brüggemann N, Haak H, Stössel A (2019) Max Planck Institute Earth System Model (MPI-ESM1.2) for the high-resolution model intercomparison project (HighResMIP). Geosci Model Dev 12(7):3241–3281

    Article  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Change 3(9):816–821

    Article  Google Scholar 

  • Jeong M-S, Oak Y-S, Young-Kune Lee Y-SL, Park M-R, Lee C-H (2017) Estimation of disaster prevention target rainfall according to urban disaster prevention performance. J Korea Acad Ind Coop Soc 18(4):101–110

    Google Scholar 

  • John JG, Blanton C, McHugh C, Radhakrishnan A, Rand K, Vahlenkamp H, Wilson C, Zadeh NT, Dunne JP, Dussin R, Horowitz LW, Krasting JP, Lin P, Malyshev S, Naik V, Ploshay J, Shevliakova E, Silvers L, Stock C, Winton M, Zeng Y (2018) NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Kim W-G, Park J-H, Lee E-R (2009) Analysis of Namgang Dam flood control during intensive rianfall in 2006, 28th Annual USSD Conference, USSD, Portland, Oregon

  • Kim J, Choi HT, Lim HG (2015) Evaluation on the application of the estimation of time of concentration using real rainfall-runoff events in small forest watershed. J Korean Soc Hazard Mitig 15(6):199–206

    Article  Google Scholar 

  • Koutsoyiannis D, Onof C (2001) Rainfall disaggregation using adjusting procedures on a Poisson cluster model. J Hydrol 246(1–4):109–122

    Article  Google Scholar 

  • Kumar J, Brooks BGJ, Thornton PE, Dietze MC (2012) Sub-daily statistical downscaling of meteorological variables using neural networks. Procedia Comput Sci 9:887–896

    Article  Google Scholar 

  • Lall U, Sharma A (1996) A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour Res 32(3):679–693

    Article  Google Scholar 

  • Lee T (2018) Multisite stochastic simulation of daily precipitation from copula modeling with a gamma marginal distribution. Theor Appl Climatol 132(3–4):1089–1098

    Article  Google Scholar 

  • Lee T, Jeong C (2014) Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios. J Hydrol 510:182–196

    Article  Google Scholar 

  • Lee T, Ouarda TBMJ (2011) Identification of model order and number of neighbors for k-nearest neighbor resampling. J Hydrol 404(3–4):136–145

    Article  Google Scholar 

  • Lee T, Park T (2017) Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: model development and performance evaluation. J Hydrol 547:498–516

    Article  Google Scholar 

  • Lee T, Singh VP (2018) Statistical downscaling for hydrological and environmental applications. CRC Press, Boca Raton, p 181

    Book  Google Scholar 

  • Lee T, Salas JD, Prairie J (2010a) An enhanced nonparametric streamflow disaggregation model with genetic algorithm. Water Resour Res 46(8):1–14

    Article  Google Scholar 

  • Lee T, Salas JD, Prairie J (2010b) An enhanced nonparametric streamflow disaggregation model with genetic algorithm. Water Resour Res 46:W08545

    Article  Google Scholar 

  • Lee T, Ouarda TBMJ, Jeong C (2012) Nonparametric multivariate weather generator and an extreme value theory for bandwidth selection. J Hydrol 452–453:161–171

    Article  Google Scholar 

  • Madsen H (1993) Algorithms for correction of error types in a semi-automatic data collection: precipitation measurements and quality control. In: Proceedings of symposium on precipitation and evaporation, Bratislava, Slovakia, pp 20–24

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 1. At-site modeling. Water Resour Res 33(4):747–757

    Article  Google Scholar 

  • Marani M, Zanetti S (2007) Downscaling rainfall temporal variability. Water Resour Res 43(9):1–7

    Article  Google Scholar 

  • Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themel M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):1–34

    Article  Google Scholar 

  • Mason SJ (2004) Simulating climate over western North America using stochastic weather generators. Clim Change 62(1–3):155–187

    Article  Google Scholar 

  • Mearns LO, Bogardi I, Giorgi F, Matyasovszky I, Palecki M (1999) Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling. J Geophys Res D Atmos 104(D6):6603–6621

    Article  Google Scholar 

  • Melillo JM, Richmond TC, Yohe GW (2014) Climate change impacts in the United States: the third national climate assessment. Global Change Research Program

  • Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415(6871):514–517

    Article  Google Scholar 

  • MoradiKhaneghahi M, Lee T, Singh VP (2019) Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature. Stoch Environ Res Risk Assess 33:1035–1056

    Article  Google Scholar 

  • Noguchi T, Yamanaka T, Nakatsugawa A (1975) Automated meteorological data acquisition system (AMeDAS). Jpn Telecommun Rev 17(1):45–53

    Google Scholar 

  • Park Y, Kim S, Lee JH, Song YH (2018) Relationship analysis of sea level-rainfall for determination of disaster prevention performance in coastal cities. J Korean Soc Hazard Mitig 18(7):469–474

    Article  Google Scholar 

  • Prudhomme C, Jakob D, Svensson C (2003) Uncertainty and climate change impact on the flood regime of small UK catchments. J Hydrol 277(1–2):1–23

    Article  Google Scholar 

  • Rockel B, Castro CL, Pielke RA Sr, von Storch H, Leoncini G (2008) Dynamical downscaling: assessment of model system dependent retained and added variability for two different regional climate models'. J Geophys Res D Atmos 113(21):1–9

    Google Scholar 

  • Salas JD, Lee T (2010) Nonparametric simulation of single-site seasonal streamflows. J Hydrol Eng 15(4):284–296

    Article  Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689

    Article  Google Scholar 

  • Seferian R (2019) CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP', Earth System Grid Federation

  • Seland Ø, Bentsen M, Oliviè DJL, Toniazzo T, Gjermundsen A, Graff LS, Debernard JB, Gupta AK, He Y, Kirkevåg A, Schwinger J, Tjiputra J, Aas KS, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M, Karset IHH, Landgren OA, Liakka J, Moseid KO, Nummelin A, Spensberger C, Tang H, Zhang Z, Heinze C, Iversen T Schulz M (2019) NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Seo S, Jung S, Lee J, Lee K (2017) Study on the determining the flood time of concentration in the design flood estimation of small watershed (in Korean). Yooshin Tech 24140-151

  • Sharma A, Lall U (1999) A nonparametric approach for daily rainfall simulation. Math Comput Simul 48(4–6):361–371

    Article  Google Scholar 

  • Shiogama H, Abe M, Tatebe H (2019) MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Soltani A, Hoogenboom G (2003) A statistical comparison of the stochastic weather generators WGEN and SIMMETEO. Clim Res 24(3):215–230

    Article  Google Scholar 

  • Son C, Lee T, Kim M, Lee S, Yoon S (2020) Climate change adaptation to extreme rainfall events on a local scale in Namyangju, South Korea. J Hydrol Eng 25(5):05020005

    Article  Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Solheim L, von Salzen K, Yang D, Winter B, Sigmond M (2019) CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Tachiiri K, Abe M, Hajima T, Arakawa O, Suzuki T, Komuro Y, Ogochi K, Watanabe M, Yamamoto A, Tatebe H, Noguchi MA, Ohgaito R, Ito A, Yamazaki D, Ito A, Takata K, Watanabe S, Kawamiya M (2019) MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Change 112(2):449–468

    Article  Google Scholar 

  • van Pelt SC, Beersma JJ, Buishand TA, van den Hurk BJJM, Kabat P (2012) Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations. Hydrol Earth Syst Sci 16(12):4517–4530

    Article  Google Scholar 

  • Vejen F, Jacobsson C, Fredriksson U, Moe M, Andresen L, Hellsten E, Rissanen P, Palsdóttir T, Arason T (2002) Quality control of meteorological observations: automatic methods used in the Nordic countries. Norwegian Meteorological Institute, OSLO

  • Voldoire A (2019) CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Volodin E, Mortikov E, Gritsun A, Lykossov V, Galin V, Diansky N, Gusev A, Kostrykin S, Iakovlev N, Shestakova A, Emelina S (2019) INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Wang GQ, Liu JH (2006) The digital watershed model

  • Wieners K-H, Giorgetta M, Jungclaus J, Reick C, Esch M, Bittner M, Gayler V, Haak H, de Vrese P, Raddatz T, Mauritsen T, von Storch J-S, Behrens J, Brovkin V, Claussen M, Crueger T, Fast I, Fiedler S, Hagemann S, Hohenegger C, Jahns T, Kloster S, Kinne S, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Müller W, Nabel J, Notz D, Peters K, Pincus R, Pohlmann H, Pongratz J, Rast S, Schmidt H, Schnur R, Schulzweida U, Six K, Stevens B, Voigt A, Roeckner E (2019) MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Wilby RL, Beven KJ, Reynard NS (2008) Climate change and fluvial flood risk in the UK: more of the same? Hydrol Process 22(14):2511–2523

    Article  Google Scholar 

  • Yukimoto S, Koshiro T, Kawai H, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yoshimura H, Shindo E, Mizuta R, Ishii M, Obata A, Adachi Y (2019) MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

  • Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Wang Y, Dobrohotoff P, Srbinovsky J, Stevens L, Vohralik P, Mackallah C, Sullivan A, O'Farrell S, Druken K (2019) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation

Download references

Funding

 It is acknowledged that this research has been performed as Project No. 21-DW-002 and supported by K-water

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Jo, J. & Singh, V.P. Temporal downscaling of daily precipitation to 10 min data for assessment of climate change impact on floods in small-size watersheds applied to Jinju, South Korea. Clim Dyn 59, 2381–2407 (2022). https://doi.org/10.1007/s00382-022-06216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06216-1

Keywords

Navigation