Skip to main content
Log in

Evolution of warm season intense rainfall in Yaan against a cold-anomaly background

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the rainfall characteristics during intense rainfall over Yaan against a cold-anomaly background, aiming to refine the understanding of different kinds of rainfall events across complex terrain. Hourly rain gauge records, ERA5 reanalysis data and the black body temperature of cloud tops derived from FY-2E were used. The results show that against a cold-anomaly background, the regional rainfall events (RREs) in Yaan exhibit west-to-east propagation, which is different from the north-to-south evolution of warm RREs. The middle and upper troposphere is dominated by a negative geopotential height anomaly corresponding to the cold anomaly. The cyclonic circulation at the higher level associated with the negative geopotential height anomaly bends the high-level jet to the south, forming a divergent zone over the Tibetan Plateau (TP) and guiding mid-level systems to move eastward. The cyclonic circulation at the mid-level produces a wind shear zone over the TP, generating anomalous vorticity that continuously moves eastward and develops to influence the rainfall over Yaan. The cold Yaan RREs are closely related to the TP low-pressure systems (both vortex and shearline). The anomalous vorticity over the TP can influence the local vortex over the eastern periphery of the TP at a distance mainly by the horizontal advection of anomalous vorticity by the mean flow and then enhance the local vortex mainly by anomalous convergence when it moves near Yaan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The hourly rain-gauge records and the black body temperature of cloud tops derived from FY-2E analyzed during the current study are available at http://data.cma.cn. The ERA5 reanalysis data used in the present study is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form.

References

  • Carbone R, Tuttle J, Ahijevych D, Trier S (2002) Inferences of predictability associated with warm season precipitation episodes. J Atmos Sci 59(13):2033–2056

    Article  Google Scholar 

  • Chen S, Lin Y (2005) Orographic effects on a conditionally unstable flow over an idealized three-dimensional mesoscale mountain. Meteorol Atmos Phys 88:1–21. https://doi.org/10.1007/s00703-003-0047-6

    Article  Google Scholar 

  • Chen H, Li J, Yu R (2017) Warm season nocturnal rainfall over the eastern periphery of the Tibetan Plateau and its relationship with rainfall events in adjacent regions. Int J Climatol 38:4786–4801. https://doi.org/10.1002/joc.5696

    Article  Google Scholar 

  • Collier CG (1975) A representation of the effects of topography on surface rainfall within moving baroclinic disturbances. Q J R Meteorol Soc 101(429):407–422. https://doi.org/10.1002/qj.49710142902

    Article  Google Scholar 

  • Du M, Li G, Li S (2020) A preliminary study of the relationship between the plateau transverse shear line and plateau vortex. Chin J Atmos Sci 44(02):269–281 (in Chinese)

    Google Scholar 

  • Gao Y, Xu J, Chen D (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J Clim 28(7):2823–2841

    Article  Google Scholar 

  • Haiden T, Kahlig P, Kerschbaum M, Nobilis F (1990) On the influence of mountains on large-scale precipitation: a deterministic approach towards orographic pmp. Hydrol Sci J 35(5):501–510

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2019) Global reanalysis: goodbye ERA-interim, hello ERA5. ECMWF Newsl 159:17–24

    Google Scholar 

  • Houze RA (2012) Orographic effects on precipitating clouds. Rev Geophys 50(1). https://doi.org/10.1029/2011RG000365

  • Hu X, Yuan W, Yu R, Zhang M (2020) The evolution process of warm season intense regional rainfall events in Yaan. Clim Dyn 54(7):3245–3258. https://doi.org/10.1007/s00382-020-05168-8

    Article  Google Scholar 

  • Jiang Q (2003) Moist dynamics and orographic precipitation. Tellus A Dyn Meteorol Oceanogr 55(4):301–316

    Article  Google Scholar 

  • Jin X, Wu T, Li L (2013) The quasi-stationary feature of nocturnal precipitation in the Sichuan basin and the role of the Tibetan Plateau. Clim Dyn 41(3):977–994. https://doi.org/10.1007/s00382-012-1521-y

    Article  Google Scholar 

  • Lee J (1942) The nighttime precipitation in the red basin of Szechuan, China. Acta Meteorol Sin 16(S1):36–53 (in Chinese)

    Google Scholar 

  • Li J (2018) Hourly station-based precipitation characteristics over the Tibetan Plateau. Int J Climatol 38(3):1560–1570. https://doi.org/10.1002/joc.5281

    Article  Google Scholar 

  • Li J, Yu R (2014) A method to linearly evaluate rainfall frequency–intensity distribution. J Appl Meteorol Climatol 53(4):928–934. https://doi.org/10.1175/jamc-d-13-0272.1

    Article  Google Scholar 

  • Li Y, Yu S, Peng J et al (1998) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (1999) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2000) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2001) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2002) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2003) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2004) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2005) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2006) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2007) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2008) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2009) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Li D, Yang S, Liu C, Zhong A, Li Y (2010a) Characteristics of the precipitation over the eastern edge of the Tibetan Plateau. Meteorol Atmos Phys 106(1):49–56

    Article  Google Scholar 

  • Li Y, Yu S, Peng J et al (2010b) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2011) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2012) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2013) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2014) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li J, Yu R, Yuan W, Chen H, Sun W, Zhang Y (2015a) Precipitation over east Asia simulated by NCAR CAM5 at different horizontal resolutions. J Adv Model Earth Syst 7(2):774–790

    Article  Google Scholar 

  • Li Y, Yu S, Peng J et al (2015b) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2016) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li L, Zhang R, Wen M (2017a) Genesis of southwest vortices and its relation to Tibetan Plateau vortices. Q J R Meteorol Soc 143(707):2556–2566. https://doi.org/10.1002/qj.3106

    Article  Google Scholar 

  • Li Y, Yu S, Peng J et al (2017b) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li Y, Yu S, Peng J et al (2018) Year book of Tibetan Plateau vortex and shear line. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li L, Zhang R, Wu P, Wen M, Duan J (2020) Roles of Tibetan Plateau vortices in the heavy rainfall over southwestern China in early July 2018. Atmos Res. https://doi.org/10.1016/j.atmosres.2020.105059

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (1998) The Asian-Australian monsoon and El Nino-Southern Oscillation in the NCAR climate system model. J Clim 11(6):1356–1385

    Article  Google Scholar 

  • Peng G, Chai F, Zeng Q, Yu R (1994) Research on ‘“Ya-An-Tian-Lou”’part I: weather analysis. Sci Atmos Sin 18:466–475 (in Chinese)

    Google Scholar 

  • Peng G, Lu P, Li Y (2008) Synoptic study on" 8· 26" Ya’an torrential rain in August 2003. Plateau Mt Meteorol Res 28(3):27–36 (in Chinese)

    Google Scholar 

  • Phillips TJ, Gleckler PJ (2006) Evaluation of continental precipitation in 20th century climate simulations: the utility of multimodel statistics. Water Resour Res. https://doi.org/10.1029/2005WR004313

    Article  Google Scholar 

  • Rucong Y, Wei L, Xuehong Z, Yimin L, Yongqiang Y, Hailong L, Tianjun Z (2000) Climatic features related to eastern China summer rainfalls in the NCAR ccm3. Adv Atmos Sci 17(4):503–518

    Article  Google Scholar 

  • Smith RB (2019) 100 years of progress on mountain meteorology research. Meteorol Monogr 59:20.21-20.73. https://doi.org/10.1175/amsmonographs-d-18-0022.1

    Article  Google Scholar 

  • Sun W, Li J, Yu R, Yuan W (2018) Circulation structures leading to propagating and non-propagating heavy summer rainfall in central north China. Clim Dyn 51(9–10):3447–3465. https://doi.org/10.1007/s00382-018-4090-x

    Article  Google Scholar 

  • Tsuyoshi N, Sota S (1994) Diurnal variation of convective activity over the tropical western pacific. J Meteorol Soc Jpn 72(5):627–641

    Article  Google Scholar 

  • Wang Z (1977) The formation and forecast of “sky leak” in Ya’an. Meteorol Sci Technol Data 1(S1):66–74 (in Chinese)

    Google Scholar 

  • Watters D, Battaglia A, Allan RP (2021) The diurnal cycle of precipitation according to multiple decades of global satellite observations, three cmip6 models, and the ECMWF reanalysis. J Clim. https://doi.org/10.1175/jcli-d-20-0966.1

    Article  Google Scholar 

  • Xi G (1992) Climatic characteristics of Ya’an regional heavy rainfall. J Sichuan Meteorol 1(12):7–15 (in Chinese)

    Google Scholar 

  • Ying X, Chong-Hai X (2012) Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmos Ocean Sci Lett 5(6):489–494

    Article  Google Scholar 

  • Yu S, Gao W (2018) A comparative analysis of cold air influences on short- and long-time maintenance of the Tibetan Plateau vortex after it moves out of the plateau. Chin J Atmos Sci 42(06):1297–1326 (in Chinese)

    Google Scholar 

  • Yu R, Xu Y, Zhou T, Li J (2007a) Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys Res Lett. https://doi.org/10.1029/2007gl030315

    Article  Google Scholar 

  • Yu R, Zhou T, Xiong A, Zhu Y, Li J (2007b) Diurnal variations of summer precipitation over contiguous China. Geophys Res Lett. https://doi.org/10.1029/2006gl028129

    Article  Google Scholar 

  • Yu R, Yuan W, Li J (2013) The asymmetry of rainfall process. Chin Sci Bull 58(16):1850–1856

    Article  Google Scholar 

  • Yu R, Chen H, Sun W (2015) The definition and characteristics of regional rainfall events demonstrated by warm season precipitation over the Beijing plain. J Hydrometeorol 16(1):396–406

    Article  Google Scholar 

  • Yuan W, Xu H, Yu R, Li J, Zhang Y, He N (2018) Regimes of rainfall preceding regional rainfall events over the plain of Beijing city. Int J Climatol 38(13):4979–4989

    Article  Google Scholar 

  • Zeng Q, Yu R, Peng G, Chai F (1994) Research on “Ya-An-Tian-Lou” part III: the physical structure and possible mechanism. Chin J Atmos Sci 18(6):649–659 (in Chinese)

    Google Scholar 

  • Zhang Q, Zhao Y, Fan S (2016) Development of hourly precipitation datasets for national meteorological stations in China. Torrential Rain Disasters 35(02):182–186 (in Chinese)

    Google Scholar 

  • Zheng Y, Gong Y, Chen J, Tian F (2019) Warm-season diurnal variations of total, stratiform, convective, and extreme hourly precipitation over central and eastern china. Adv Atmos Sci 36(2):143–159. https://doi.org/10.1007/s00376-018-7307-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the constructive comments and suggestions from the anonymous reviewers and the editor. The NCAR Command Language (2019) are also greatly appreciated. The reference of NCAR Command Language, which should been inserted in the reference list, is as follow: The NCAR Command Language (Version 6.6.2) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.

Funding

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 41875112) and the National Key R&D Program of China (Grant No. 2018YFC1507603).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by RY, and analysis were performed by WY and XH. The first draft of the manuscript was written by XH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weihua Yuan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Yuan, W. & Yu, R. Evolution of warm season intense rainfall in Yaan against a cold-anomaly background. Clim Dyn 59, 2169–2180 (2022). https://doi.org/10.1007/s00382-022-06202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06202-7

Keywords

Navigation