Skip to main content

Advertisement

Log in

Spatial patterns and possible mechanisms of precipitation changes in recent decades over and around the Tibetan Plateau in the context of intense warming and weakening winds

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Tibetan Plateau (TP) significantly affects its surroundings and the global climate through thermal and dynamic processes. Precipitation is a key driver of hydrological, meteorological, and ecological processes. In general, the precipitation over and around the TP displays a wetting trend over the past half century, with large spatial heterogeneity. However, the causes of such spatially variable trends in TP precipitation and the driving forces have not been well quantified. Here we investigate the spatial patterns of precipitation trends and their possible mechanisms, using ground-based observations from 132 CMA (China Meteorological Administration) stations (1970–2016) and CMFD (China Meteorological Forcing Dataset) reanalysis data (1980–2016) over and around the TP. The major findings are: (1) Pronounced spatial patterns of precipitation changes (increasing in inner TP and decreasing for regions around the TP) are observed in both CMA and CMFD data. (2) Maximum precipitation decreases generally occurred in stations that experienced southwestern daily maximum winds. (3) Positive correlations between mean precipitation and temperature (or daily maximum winds) are obtained in clusters with maximum precipitation increase (decrease), which are further verified by the qualitative and quantitative analysis of the CMFD dataset. (4) Therefore, we suggest that intensified local recycling in a intense warming and hydrologically unbalanced environment has led to precipitation increases in central TP, whereas precipitation decreases in areas bordering the TP may be the result of weakening Indian monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An WL, Hou SG, Zhang Q, Zhang WB, Wu SY, Xu H, Pang HX, Wang YT, Liu YP (2017) Enhanced recent local moisture recycling on the Northwestern Tibetan Plateau deduced from ice core deuterium excess records. J Geophys Res 122(23):12541–12556

    Article  Google Scholar 

  • Barreiro M, Díaz N (2011) Land–atmosphere coupling in El Niño influence over South America. Atmosp Sci Lett 12(4):351–355

    Article  Google Scholar 

  • Beaugrand G (2009) Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Sea Res Part II 56(8–10):656–673

    Article  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36(3–4):233–251

    Article  Google Scholar 

  • Chen B, Xu XD, Yang S, Zhang W (2012) On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theoret Appl Climatol 110(3):423–435

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau. J Geophys Res, 112(F2).

  • Cuo L, Zhang Y, Wang Q, Zhang L, Zhou B, Hao Z, Su F (2013) Climate change on the northern Tibetan Plateau during 1957–2009: spatial patterns and possible mechanisms. J Clim 26(1):85–109

    Article  Google Scholar 

  • Cuo L, Zhang Y, Bohn TJ, Zhao L, Li J, Liu Q, Zhou B (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res 120(16):8276–8298

    Article  Google Scholar 

  • Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dyn 6(1):109–124

    Article  Google Scholar 

  • Deng H, Pepin NC, Chen Y (2017) Changes of snowfall under warming in the Tibetan Plateau. J Geophys Res 122(14):7323–7341

    Article  Google Scholar 

  • Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. In: Climatic change at high elevation sites. Springer, Dordrecht, pp 21–47

    Chapter  Google Scholar 

  • Feng L, Zhou T (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis. J Geophys Res 117(D20).

  • Gao Y, Cuo L, Zhang Y (2014) Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J Clim 27(5):1876–1893

    Article  Google Scholar 

  • Gruber A, Winston JS (1978) Earth-atmosphere radiative heating based on Noaa scanning radiometer measurements. Bull Am Meteor Soc 59(12):1570–1573

    Article  Google Scholar 

  • Guenette S, Araujo JN, Bundy A (2014) Exploring the potential effects of climate change on the Western Scotian Shelf ecosystem, Canada. J Mar Syst 134:89–100

    Article  Google Scholar 

  • Guo Y, Wang C (2014) Trends in precipitation recycling over the Qinghai–Xizang Plateau in last decades. J Hydrol 517:826–835

    Article  Google Scholar 

  • Guo X, Wang L, Tian L (2016) Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau. Int J Climatol 36(4):1901–1916

    Article  Google Scholar 

  • Guo X, Wang L, Tian L, Li X (2017a) Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. Int J Climatol 37(2):1117–1126

    Article  Google Scholar 

  • Guo X, Tian L, Wen R, Yu W, Qu D (2017b) Controls of precipitation δ18O on the northwestern Tibetan Plateau: a case study at Ngari station. Atmos Res 189:141–151

    Article  Google Scholar 

  • Guo D, Sun J, Yang K, Pepin N, Xu Y (2019) Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets. J Geophys Res 124(15):8511–8521

    Article  Google Scholar 

  • Hrudya PH, Varikoden H, Vishnu R (2020) A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol Atmosp Phys 1–14.

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Jiang X, Ting M (2017) A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J Clim 30(23):9607–9620

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett, 5(1):015101.

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7(12):1170–1179

    Article  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Heisler JL (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58(9):811–821

    Article  Google Scholar 

  • Kuang X, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res 121(8):3979–4007

    Article  Google Scholar 

  • Kuttippurath J, Murasingh S, Stott PA, Sarojini BB, Jha MK, Kumar P, Nair PJ, Varikoden H, Raj S, Francis PA, Pandey PC (2021) Observed rainfall changes in the past century (1901–2019) over the wettest place on Earth. Environ Res Lett 16(2): 024018.

  • Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y (2013) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J Hydrol 483:61–67

    Article  Google Scholar 

  • Li X, Wang L, Guo X, Chen D (2017) Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int J Climatol 37(S1):1278–1284

    Article  Google Scholar 

  • Lin C, Yang K, Qin J, Fu R (2013) Observed coherent trends of surface and upper-air wind speed over China since 1960. J Clim 26(9):2891–2903

    Article  Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68(3):164

    Article  Google Scholar 

  • Liu W, Wang L, Chen D, Tu K, Ruan C, Hu Z (2016) Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Clim Dyn 46(11–12):3481–3497

    Article  Google Scholar 

  • Ma Y, Kang S, Zhu L, Xu B, Tian L, Yao T (2008) Tibetan observation and research platform: atmosphere–land interaction over a heterogeneous landscape. Bull Am Meteor Soc 89(10):1487–1492

    Google Scholar 

  • Ma Y, Lu M, Chen H, Pan M, Hong Y (2018) Atmospheric moisture transport versus precipitation across the Tibetan Plateau: a mini-review and current challenges. Atmos Res 209:50–58

    Article  Google Scholar 

  • Mackay A (2008) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. J Environ Q 37(6):2407.

  • Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J Clim 27(5):1910–1927

    Article  Google Scholar 

  • Mcvicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205

    Article  Google Scholar 

  • Meng F, Su F, Li Y, Tong K (2019) Changes in terrestrial water storage during 2003–2014 and possible causes in Tibetan Plateau. J Geophys Res 124(6):2909–2931

    Article  Google Scholar 

  • Mohan TS, Rajeevan M (2017) Past and future trends of hydroclimatic intensity over the Indian monsoon region. J Geophys Res 122(2):896–909

    Article  Google Scholar 

  • Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Chang 4(1):68–73

    Article  Google Scholar 

  • Nair PJ, Chakraborty A, Varikoden H, Francis PA, Kuttippurath J (2018) The local and global climate forcings induced inhomogeneity of Indian rainfall. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Pan C, Zhu B, Gao J, Kang H, Zhu T (2019) Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim Dyn 52(1–2):181–196

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ, Grp MRIEW (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430

    Article  Google Scholar 

  • Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35(14).

  • Pritchard HD (2019) Asia’s shrinking glaciers protect large populations from drought stress. Nature 569(7758):649–654

    Article  Google Scholar 

  • Qi WW, Zhang BP, Yao YH, Zhao F, Zhang S, He WH (2016) A topographical model for precipitation pattern in the Tibetan Plateau. J Mt Sci 13(5):763–773

    Article  Google Scholar 

  • Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97(1–2):321

    Article  Google Scholar 

  • Rajagopalan B, Molnar P (2013) Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J Geophys Res 118(3):1170–1178

    Article  Google Scholar 

  • Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36(6).

  • Ren J, Jing Z, Pu J, Qin X (2006) Glacier variations and climate change in the central Himalaya over the past few decades. Ann Glaciol 43:218–222

    Article  Google Scholar 

  • Shen M, Tang Y, Chen J, Zhu X, Zheng Y (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric for Meteorol 151(12):1711–1722

    Article  Google Scholar 

  • Shi Q, Liang S (2013) Characterizing the surface radiation budget over the Tibetan Plateau with ground‐measured, reanalysis, and remote sensing data sets: 2. Spatiotemporal analysis. J Geophys Res 118(16): 8921–8934.

  • Singh P, Nakamura K (2009) Diurnal variation in summer precipitation over the central Tibetan Plateau. J Geophys Res 114(D20).

  • Song C, Huang B, Richards K, Ke L, Hien Phan V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186

    Article  Google Scholar 

  • Srinivasan MS (2012) Synchronous reduction in Indian summer and winter monsoon intensity during the northern hemisphere cold episodes: possible implications on climate modelling. Curr Sci 103(12):1398

    Google Scholar 

  • Stolbova V, Surovyatkina E, Bookhagen B, Kurths J (2016) Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys Res Lett 43(8):3982–3990

    Article  Google Scholar 

  • Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y (2016) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global Planet Change 136:82–95

    Article  Google Scholar 

  • Sun J, Yang K, Guo W, Wang Y, He J, Lu H (2020) Why has the inner Tibetan Plateau become wetter sine the mid-1990s? J Clim 33(19):8507–8522

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res 106(D22):28081–28088

    Article  Google Scholar 

  • Tong K, Su F, Yang D, Zhang L, Hao Z (2014) Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int J Climatol 34(2):265–285

    Article  Google Scholar 

  • Wang XM, Liu HJ, Zhang LW, Zhang RH (2014) Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District. Water Sci Eng 7(3):250–266

    Google Scholar 

  • Wang Z, Duan A, Yang S, Ullah K (2017) Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J Geophys Res 122(2):614–630

    Article  Google Scholar 

  • Wang Z, Wu R, Zhao P, Yao SL, Jia X (2019) Formation of snow cover anomalies over the Tibetan Plateau in cold seasons. J Geophys Res 124(9):4873–4890

    Article  Google Scholar 

  • Wu GX, Li WP, Liu H (1997) Sensible heating-driving air pump of the Tibetan Plateau and the Asian summer monsoon. Memorial Volume of Prof. Zhao J. Z and Ye D.Z, pp 116–126

  • Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126(4):913–927

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Gao S (2008) World water tower: an atmospheric perspective. Geophys Res Lett 35(20).

  • Xu Y, Gao Y (2019) Quantification of evaporative sources of precipitation and its changes in the Southeastern Tibetan Plateau and Middle Yangtze River Basin. Atmosphere 10(8):428

    Article  Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change 109(3–4):517–534

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

    Article  Google Scholar 

  • Yang R, Zhu L, Wang J, Ju J, Ma Q, Turner F, Guo Y (2017) Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim Change 140(3–4):621–633

    Article  Google Scholar 

  • Yao TD, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, Yang XX, Duan KQ, Zhao HB, Xu BQ, Pu JC, Lu AX, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667

    Article  Google Scholar 

  • Yao TD, Masson-Delmotte V, Gao J, Yu WS, Yang XX, Risi C, Sturm C, Werner M, Zhao HB, He Y, Ren W, Tian LD, Shi CM, Hou SG (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys 51(4):525–548

    Article  Google Scholar 

  • Yao TD, Xue YK, Chen DL, Chen FH, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang RH, Xu BQ, Dozier J, Gillespie T, Gu Y, Kang SC, Piao SL, Sugimoto S, Ueno K, Wang L, Wang WC, Zhang F, Sheng YW, Guo WD, Ailikun Yang XX, Ma YM, Shen SSP, Su ZB, Chen F, Liang SL, Liu YM, Singh VP, Yang K, Yang DQ, Zhao XQ, Qian Y, Zhang Y, Li Q (2019) Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull Am Meteorol Soc 100(3):423–444

  • Yin Y, Wu S, Zhao D (2013) Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau. J Geophys Res 118(19):10850–10860

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E, Yan Y (2008) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res 113(D7).

  • Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D (2017a) Recent changes in the moisture source of precipitation over the Tibetan Plateau. J Clim 30(5):1807–1819

    Article  Google Scholar 

  • Zhang GQ, Yao TD, Shum CK, Yi S, Yang K, Xie HJ, Feng W, Bolch T, Wang L, Behrangi A, Zhang HB, Wang WC, Xiang Y, Yu JY (2017b) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett 44(11):5550–5560

    Article  Google Scholar 

  • Zhang W, Zhou T, Zhang L (2017c) Wetting and greening Tibetan Plateau in early summer in recent decades. J Geophys Res 122(11):5808–5822

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D, van der Ent RJ, Liu X, Li W, Haile GG (2019a) Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. J Hydrometeorol 20(2):217–229

    Article  Google Scholar 

  • Zhang T, Zhang YS, Gun YH, Ma N, Dai D, Song HT, Qu DM, Gao HF (2019b) Controls of stable isotopes in precipitation on the central Tibetan Plateau: a seasonal perspective. Quatern Int 513:66–79

    Article  Google Scholar 

  • Zhang Y, Huang W, Zhong D (2019c) Major Moisture Pathways and Their Importance to Rainy Season Precipitation over the Sanjiangyuan Region of the Tibetan Plateau. J Clim 32(20):6837–6857

    Article  Google Scholar 

  • Zhang X, Ren Y, Yin ZY, Lin Z, Zheng D (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai‐Tibetan Plateau during 1971–2004. J Geophys Res Atmos 114(D15)

  • Zheng D, Zhang QS, Wu SH (2000) Mountain geoecology and sustainable development of the Tibetan Plateau (Vol. 57). Springer Science & Business Media

  • Zhou C, Zhao P, Chen J (2019) The Interdecadal Change of Summer Water Vapor over the Tibetan Plateau and Associated Mechanisms. J Clim 32(13):4103–4119

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 42071090, 41701080, 91747201, 41771043, 41530748, 41571033) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19070301 and XDA20060202). We thank the China Meteorological Administration (CMA, http://data.cma.cn/) and National Tibetan Plateau Data Center (China Meteorological Forcing Dataset, CMFD, http://data.tpdc.ac.cn) for access to the data used in this analysis. The data that support the findings of this study are available from the CMA (http://data.cma.cn/) and the CMFD (http://data.tpdc.ac.cn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Tian, L. Spatial patterns and possible mechanisms of precipitation changes in recent decades over and around the Tibetan Plateau in the context of intense warming and weakening winds. Clim Dyn 59, 2081–2102 (2022). https://doi.org/10.1007/s00382-022-06197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06197-1

Keywords

Navigation