Skip to main content

Advertisement

Log in

Long-term changes in the Arabian Peninsula rainfall and their relationship with the ENSO signals in the tropical Indo-Pacific

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate long-term changes in winter rainfall patterns across the Arabian Peninsula (AP) through an analysis of the Climate Research Unit (CRU) gridded rainfall dataset, and long-term rainfall measurements collected at 39 stations distributed across the AP over the period 1951–2010. We reveal a long-term increase in winter rainfall of about 25–30% over the eastern AP and a long-term decrease of about 10–20% in the southern and northeastern AP. A partial correlation analysis suggests that canonical El Niños are associated with significant negative winter rainfall anomalies in the southern and southwest AP during the 1951–1980 period. However, the extent of the El Niño-induced rainfall deficit decreased in subsequent decades. In fact, a significant above-average rainfall occurs in recent decades over Ethiopia, southwest Yemen and central AP during canonical El Niños. Furthermore, positive phases of the Indian Ocean basin mode (IOBM), which lags the canonical ENSO signal by 3–4 months, are linked with significant below-average winter rainfall over the central and northern AP, but only until the 1970 s. We investigated the teleconnections between the variability of AP winter rainfall and various atmospheric parameters from the European Centre for Medium Range Weather Forecasting (ECMWF) twentieth century (ERA-20C) reanalysis. Notably, sub-tropical westerly jet (STJ) shifted southward and intensified over the AP during recent decades. This shift of the STJ favoured an increase in the frequent passage of transients, which contributed to increased winter rainfall over AP. These events anomalously strengthen the upper level westerlies during El Niño Modokis, adding to the recently-strengthened STJ over the AP, thereby further intensifying the transient activity. This large-scale background change likely weakened the impact of canonical El Niño and the IOBM events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The CRU, ERA5 datasets used in this study are freely available which were properly cited in the manuscript.

References

  • Abid MA, Almazroui M, Kucharski F, O’Brien E, Yousef AE (2018) ENSO relationship to summer rainfall variability and its potential predictability over Arabian Peninsula region. Clim Atmos Sci 1(1):1

    Google Scholar 

  • Abid MA, Ashfaq M, Kucharski F, Evans KJ, Almazroui M (2020) Tropical Indian Ocean mediates ENSO influences over central southeast Asia during wet season. Geol Res Lett 47:18

    Article  Google Scholar 

  • Almazroui M (2011) Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res 99:400–414

    Article  Google Scholar 

  • Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966

    Article  Google Scholar 

  • Alory GS, Wijffels MG (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34:L02606

    Article  Google Scholar 

  • Alory G (2009) Warming of the upper equatorial Indian Ocean and changes in the heat budget (1960–99). J Clim 22:93–113

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007a) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2003) A Look at the Relationship between the ENSO and the Indian Ocean Dipole. J Meteorol Soc Jpn 81(1):41–56

    Article  Google Scholar 

  • Ashok K, Nagaraju C, Sengupta A, Pai. S (2014) Decadal changes in the relationship between the Indian and Australian summer monsoons. Clim Dyn 42(3–4):1043–1052

    Article  Google Scholar 

  • Ashok K, Nakamura H, Yamagata T (2007) Impacts of ENSO and IOD events on the Southern Hemisphere storm track activity during austral winter. J Clim 20:3147–3163

    Article  Google Scholar 

  • Ashok K, Shamal M, Sahai AK, Swapna P (2017) Nonlinearities in the evolutional distinctions between El Niño and La Niña types. J Geophys Res Oceans 122:9649–9662

    Article  Google Scholar 

  • Attada R, Dasari HP, Parekh A, Chowdary JS, Langodan S, Knio O, Ibrahim H (2018) The role of the Indian Summer Monsoon variability on Arabian Peninsula summer climate. Clim Dyn 52:3389–3404

    Article  Google Scholar 

  • Attada R, Dasari HP, Kumar RK, Langodan S, Kumar KN, Knio O, Hoteit I (2020) Evaluating cumulus parameterization schemes for the simulation of Arabian Peninsula winter rainfall. J Hydrometeorol 21(5):1089–1114

    Article  Google Scholar 

  • Attada R, Dasari HP, Chowdary JS, Yadav RK, Omar K, Ibrahim H (2018) Surface air temperature variability over the arabian peninsula and its links to circulation patterns. Int J Clim 39(1):445–464

    Article  Google Scholar 

  • Attada R, Yadav RK, Kumar RK, Dasari HP, Omar K, Hoteit I (2018) Prominent mode of summer surface air temperature variability and associated circulation anomalies over the Arabian Peninsula. Atmos Sci Lett 19:11

    Article  Google Scholar 

  • Babu CA, Jayakrishnan PR, Varikoden H (2016) Characteristics of precipitation pattern in the Arabian Peninsula and its variability associated with ENSO. Arab J Geosci 9:186

    Article  Google Scholar 

  • Baines PG, Folland. CK (2007) Evidence for a rapid global climate shift across the late 1960s. J Clim 20:2721–2744

    Article  Google Scholar 

  • Behera S, Yamagata Y (2018) Climate dynamics of ENSO Modoki phenomena. Oxford Res Encycl Clim Sci. https://doi.org/10.1093/acrefore/9780190228620.013.612

    Article  Google Scholar 

  • Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938

    Article  Google Scholar 

  • Capotondi A, Sardeshmukh PD (2017) Is El Niño really changing? Geophys Res Lett 44:8548–8556

    Article  Google Scholar 

  • Capotondi A, Sardeshmukh PD (2015) Optimal precursors of different types of ENSO events. Geophys Res Lett 42:9952–9960

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev 136:2999–3017

    Article  Google Scholar 

  • Chakraborty A, Behera SK, Mujumdar M, Ohba R, Yamagata T (2006) Diagnosis of tropospheric moisture over saudi arabia and influences of IOD and ENSO. Mon Wea Rev 134(2):598–617

    Article  Google Scholar 

  • Cowan T, and W. Cai (2013) The response of the large-scale ocean circulation to 20th century Asian and non-Asian aerosols. Geophys Res Lett 40:2761–2767

    Article  Google Scholar 

  • Dasari HP, Langodan S, Viswanadhapalli Y, Vadlamudi BR, Papadopoulos VP, Hoteit I (2018) ENSO influence on the interannual variability of the Red Sea convergence zone and associated rainfall. Int J Clim 38(2):761–775

    Article  Google Scholar 

  • Davies HC, Rossa AM (1998) PV frontogenesis and upper-tropospheric fronts. Mon Wea Rev 126:1528–1539

    Article  Google Scholar 

  • Dayan U, Sharon D (1980) Meteorological parameters discriminating between widespread and spotty storms in the Negev. Israel J Earth Sci 29:253–256

    Google Scholar 

  • de Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J Geophys Res Atmos 118:7087–7108

    Article  Google Scholar 

  • Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837

    Article  Google Scholar 

  • Dogar MB, Sato T (2018) Analysis of climate trends and leading modes of climate variability for MENA region. J Geophys Res Atmos 123:13074–13091

    Article  Google Scholar 

  • Donat MG, Peterson TC, Brunet M, King AD, Almazroui M, Kolli RK, Boucherf D, Al-Mulla AY, Nour AY, Aly AA, Nada TA, Semawi MM, Dashti A, Salhab HA, El Fadli TG, Muftah KI, Dah Eida MK, Badi S, Driouech W, Rhaz FEl, Abubaker K, Ghulam MJ, Erayah AS, Mansour AS, Alabdouli MB, Dhanhani WOA, Shekaili A, M.N (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Clim 34(3):581–592

    Article  Google Scholar 

  • El Kenawy AM, McCabe MF (2016) A multidecadal assessment of the performance of gauge- and model‐based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int J Clima 36(2):656–674

    Article  Google Scholar 

  • Feba F, Ashok K, Ravichandran M (2019) Role of changed Indo-Pacific atmospheric circulation in the recent disconnect between the Indian summer monsoon and ENSO. Clim Dyn 52(3–4):1461–1470

    Article  Google Scholar 

  • Freund MB, Henley BJ, Karoly DJ et al (2019) Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat Geosci 12:450–455

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc 106:447–462

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  Google Scholar 

  • Guan Z, Ashok K, Yamagata T (2003) Summertime response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies. J Meteorol Soc Jpn 81(3):533–561

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci. 109:14726–14727 https://doi.org/10.1073/pnas.1205276109

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Clim 34:623–642

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monogr., 134, Amer. Geophys. Union, pp 1–35

  • Jadhav J, Panickal S, Marathe S et al (2015) On the possible cause of distinct El Niño types in the recent decades. Sci Rep 5:17009

    Article  Google Scholar 

  • Kang I, Rashid IU, Kucharski F, Almazroui M, Alkhalaf AK (2015) Multidecadal changes in the relationship between ENSO and wet-season precipitation in the Arabian Peninsula. J Clim 28:4743–4752

    Article  Google Scholar 

  • Karnauskas KB (2013) Can we distinguish canonical El Niño from Modoki? Geophys Res Lett 40(19):5246–5251

    Article  Google Scholar 

  • Krichak SO, Breitgand JS, Gualdi S, Feldstein S (2014) Teleconnection–extreme precipitation relationships over the Mediterranean region. Theor Appl Climatol 117:679–692

    Article  Google Scholar 

  • Krishna Kumar K, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kumar KN, Entekhabi D, Molini A (2015) Hydrological extremes in hyperarid regions: A diagnostic characterization of intense precipitation over the central Arabian Peninsula. Journal of Geophysical Research: Atmospheres 120:1637–1650

    Article  Google Scholar 

  • Kumar NK, Ouarda TBMJ, Sandeep S, Ajayamohan RS (2016) Wintertime precipitation variability over the Arabian Peninsula and its relationship with ENSO in the CAM4 simulations. Clim Dyn 47:2443–2454

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2002) ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Clim 15:1118–1140

    Article  Google Scholar 

  • Levitus S, and Coauthors (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603

    Google Scholar 

  • Levitus S, Antonov. J, T. Boyer (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604

    Article  Google Scholar 

  • Li Y, Lau NC (2012) Impact of ENSO in the atmospheric variability over the North Atlantic in late winter role of transient eddies. J Clim 25:320–342

    Article  Google Scholar 

  • Molteni F, Stockdale TN, Vitart F (2015) Understanding and modelling extra-tropical teleconnections with the Indo-Pacific region during the northern winter. Clim Dyn 45:3119–3140

    Article  Google Scholar 

  • Mujumdar M (2006) Diagnostic Analysis of wintertime rainfall events over the Arabian region. IITM Research Report, RR-111, ISSN0252–1075(https://www.tropmet.res.in/~lip/Publication/RR-pdf/RR-111.pdf)

  • Nakamura H, and A. Shimpo (2004) Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed by a reanalysis dataset. J Clim 17(9):1828–1844

    Article  Google Scholar 

  • Nastos P (2011) Trends and variability of precipitation within the Mediterranean region, based on Global Precipitation Climatology Project (GPCP) and ground based datasets. In: Lambrakis N, Stournaras G, Katsanou K (eds) Advances in the research of aquatic environment. Environmental earth sciences.Springer, Berlin https://doi.org/10.1007/978-3-642-19902-8

    Chapter  Google Scholar 

  • Navarra A, Tribbia J (2005) The coupled manifold. J Atmos Sci 62:310–330

    Article  Google Scholar 

  • Nicholls N (1989) Sea surface temperatures and Australian winter rainfall. J Clim 2:965–973

    Article  Google Scholar 

  • Palmén E (1949) On the origin and structure of high-level cyclones South of the maximum westerlies. Tellus 1(1):22–31

    Article  Google Scholar 

  • Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DG, Peubey C, Thépaut J, Trémolet Y, Hólm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20 C: an atmospheric reanalysis of the twentieth century. J Clim 29:4083–4097

    Article  Google Scholar 

  • Preethi B, Sabin TP, Adedoyin JA, Ashok K (2015) Impacts of the ENSO Modoki and other tropical Indo-Pacific climate-drivers on African rainfall. Sci Rep 5:16653

    Article  Google Scholar 

  • Qian B, Xu H, Corte RJ (2000) Spatial-temporal structures of quasi-periodic oscillations in precipitation over Europe. Int J Clim 20:1583–1598

    Article  Google Scholar 

  • Rana S, McGregor J, Renwick J (2017) Wintertime precipitation climatology and ENSO sensitivity over central southwest Asia. Int J Clim 37(3):1494–1509

    Article  Google Scholar 

  • Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2009) The new“GPCC Full Data Reanalysis Version 5”providing high quality gridded monthly precipitation data for the global land‐surface is public available since December 2010. GPCC Status Report, December 2010 (pp. 1–7)

  • Saeed S, Almazroui M (2019) Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. Clim Dyn https://doi.org/10.1007/s00382-019-04862-6.

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole in the tropical Indian Ocean. Nature 401:360–363

    Article  Google Scholar 

  • Saji NH, Xie S, Yamagata T (2006) Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J Clim 19(17):4397–4417

    Article  Google Scholar 

  • Samanta D, Rajagopalan B, Kristopher BK, Zhang L, Nathalie FG (2020) La Niña’s diminishing fingerprint on the Central Indian Summer Monsoon.Geophy Res Lett https://doi.org/10.1029/2019GL086237.

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2018) Modulation of winter precipitation dynamics over the Arabian Gulf by ENSO. J Geol Res Atmos 123:198–210

    Article  Google Scholar 

  • Serrano GJ, Cassou C, Douville H, Giannini A, Doblas-Reyes FJ (2017) Revisiting the ENSO teleconnection to the tropical North Atlantic. J Clim 30(17):6945–6957

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperature based on COADS data (1854–1997). J Clim 16:1495–1510

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sun D-Z, Lindzen RS (1993) Distribution of tropical tropospheric water vapor. J Atmos Sci 50:1643–1660

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmo Sci 58:608–627

    Article  Google Scholar 

  • Tanarhte M, Hadjinicolaou P, Lelievld J (2012) Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. J Geophys Res 117:D12102

    Google Scholar 

  • Taschetto et al (2020) ENSO atmospheric teleconnections El Niño Southern oscillation in a changing climate. John Wiley & Sons Inc, New York, pp 309–335

    Book  Google Scholar 

  • Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Clim 22(11):3167–3174

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal Atmospheric-Ocean Variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Ummenhofer CC, England MH, McIntosh PC, Meyers GA (2009) Wheat causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. https://doi.org/10.1029/2008GL036801

    Article  Google Scholar 

  • Viswanadhapalli Y, Dasari HP, Langodan S, Challa VS, Hoteit I (2017) Climatic features of the Red Sea from a regional assimilative model. Int J Clim 37(5):2563–2581

    Article  Google Scholar 

  • Walters KR, Sjoberg WF (1988) The Persian Gulf region: a climatological study. USAF Environmental Technical Applications Center, Scott Air Force Base, Illinois, 62225–5438, USA. Technical report No. USAFETAC/TN–88/002 (AD–A222 654)

  • Weare BC (1979) A statistical study of the relationships between ocean surface temperatures and the Indian monsoon. J Atm Sci 36:2279–2291

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674

    Article  Google Scholar 

  • Weng H, Ashok. K, Behera. SK, Rao. SA, Yamagata T (2007) Impacts of recent El Nino Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, London, p 676

    Google Scholar 

  • Yang JL, Liu QY, Liu ZY, Wu LX, Huang F (2009) Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circum global teleconnection. Geophys Res Lett 36:L19705

    Article  Google Scholar 

  • Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708

    Article  Google Scholar 

  • Yeh S-W, Cai W, Min SK, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, An SI, Yim BY, Kug JS (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J Clim 23:2869–84

    Article  Google Scholar 

  • Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multidecadal variability described through the PDO index. Int J Clim 28:995–1006

    Article  Google Scholar 

  • Zolina O, Dufour A, Gulev S, Stenchikov G (2017) Regional hydrological cycle over the Red Sea in ERA-interim. J Hydrometeorol 18:65–83

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by the office of Sponsor Research (OSR) at King Abdullah University of Science and Technology (KAUST) under the Virtual Red Sea Initiative (REP/1/3268-01-01) and the Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Partial correlation method.

The degrees of freedom decrease with the increase in predictors by removing (partial out) their impact. We can use multiple predictors above two, as documented in various text books such as Nicholls (1989), Wilks (2011), Pedhazur (1997), and Spiegel (1997). The method was also extensively applied, for example Saji et al. (1999); Guan et al. (2003); Ashok et al. (2007a, b, (2014; Preethi et al. (2015)). The partial correlation coefficient R12,3 between two variables Var1, Var2, after removing the influence of the variable Var3, is given by.

$${R}_{\text{12,3}}= \frac{{R}_{12 }- {R}_{13}{R}_{23}}{\sqrt{\left(1- {{R}^{2}}_{13}\right)\left(1- {{R}^{2}}_{23}\right)}} .$$
(1)

In Eq. 1, the term \({R}_{ij }\) represents the linear correlation coefficient between variables i j. The partial coefficient \({R}_{12,34 }\)between two variables Var1, Var2, after removing the influence of the variables Var3 and Var4, is obtained by

$${R}_{\text{12,34}}= \frac{{R}_{\text{12,4} }- {R}_{\text{13,4}}{R}_{\text{23,4}}}{\sqrt{\left(1- {{R}^{2}}_{\text{13,4}}\right)\left(1- {{R}^{2}}_{\text{23,4}}\right)}} =\frac{{R}_{\text{12,3} }- {R}_{\text{14,3}}{R}_{\text{24,3}}}{\sqrt{\left(1- {{R}^{2}}_{\text{14,3}}\right)\left(1- {{R}^{2}}_{\text{24,3}}\right)}} .$$
(2)

The number of degrees of freedom for seasonal partial correlations was fixed at N-3 for the first order and N‐4 for the second order, N being the number of values in the time series.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasari, H.P., Desamsetti, S., Langodan, S. et al. Long-term changes in the Arabian Peninsula rainfall and their relationship with the ENSO signals in the tropical Indo-Pacific. Clim Dyn 59, 1715–1731 (2022). https://doi.org/10.1007/s00382-021-06062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06062-7

Keywords

Navigation