Skip to main content
Log in

Relationship between sea surface temperature anomalies in the Southwestern Atlantic Continental Shelf and atmospheric variability on intraseasonal timescales

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The intraseasonal (IS) variability of the sea surface temperature (SST) in the Southwestern Atlantic Continental Shelf (SWACS, 45–33° S—70–50° W), and its relationship with that in the atmosphere, was studied for the austral warm season. SST satellite data (11-km resolution NOAA CoastWatch Program) and data of different atmospheric variables (Reanalysis1 NCEP/NCAR and ERA-Interim) were used. Data were filtered using a 10–90 day filter to isolate the IS variability. A Principal Component analysis was applied then to the filtered SST anomalies (SSTA) and the activity of the leading modes was described through the corresponding temporal series. The first three modes are significant. EOF1 (25.7% of variance) exhibits SSTA of opposite sign to the north/south of 42° S. EOF2 (9.0%) and EOF3 (5.1%) are related with centers of SSTA of opposite sign located off the Uruguayan coast and in the middle shelf. Composites of SSTA and of key atmospheric variables were made considering the days in which the main modes were active. They show that the SSTA described by the three modes are associated with distinctive regional sea level pressure anomalies that, in turn, seem to be related to atmospheric Rossby wave trains extending from the Australia area towards South America. The corresponding atmospheric wave sources vary depending on the mode. These results show, therefore, that the SSTA in the SWACS exhibit significant IS variability that is, in part, locally and remotely influenced by atmospheric anomalies oscillating on similar timescales. These ocean–atmosphere teleconnections could help to improve ocean predictability at those timescales in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The SST data that support the findings of this study are available in NOAA CoastWatch Program, NOAA NESDIS Office of Satellite Data Processing and Distribution, and NASA’s Goddard Space Flight Center, OceanColor Web at https://coastwatch.pfeg.noaa.gov/infog/BA_ssta_las.html. The relevant atmospheric variables data that support the findings of this study are available in National Center for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset (Kalnay et al. 1996) through the IRI Data Library and from the ERA Interim reanalysis from the European Centre for Medium-Range Weather Forecasts (Dee et al. 2011) at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. Outgoing Longwave Radiation (OLR) data, considered as a proxy of atmospheric convection, were obtained from the National Oceanic and Atmospheric Administration (NOAA) gridded dataset at https://psl.noaa.gov/data/gridded/data.interp_OLR.html. The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code used during the current study is available from the corresponding author on reasonable request.

References

  • Alexander MA, Scott JD (1997) Surface flux variability over the North Pacific and North Atlantic Oceans. J Climate 10:2963–2978

    Article  Google Scholar 

  • Alvarez MS, Vera CS, Kiladis GN et al (2016) Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Clim Dyn 46:245. https://doi.org/10.1007/s00382-015-2581-6

    Article  Google Scholar 

  • Alvarez MS, Vera CS, Kiladis GN (2017) MJO modulating the activity of the leading mode of intraseasonal variability in South America. Atmosphere 8(12):232. https://doi.org/10.3390/atmos8120232

    Article  Google Scholar 

  • Barreiro M, Sitz L, de Mello S, Fuente Franco R, Renom M, Farneti R (2018) Modeling the role of Atlantic air-sea interaction in the impact of MJO on South American climate. Int J Climatol 39(2):1104–1116

    Article  Google Scholar 

  • Berbery EH, Nogués-Paegle J (1993) Intraseasonal interactions between the Tropics and extratropics in the Southern Hemisphere. J Atmos Sci 50:1950–1965

    Article  Google Scholar 

  • Bodnariuk N, Simionato C, Saraceno M (2021) SAM-driven variability of the southwestern Atlantic shelf sea circulation. Cont Shelf Res 212:104313. https://doi.org/10.1016/j.csr.2020.104313 (ISSN 0278-4343)

    Article  Google Scholar 

  • Carvalho LM, Jones C, Liebmann B (2004) The South atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Climate 17:88–108. https://doi.org/10.1175/1520-0442(2004)017%3c0088:TSACZI%3e2.0.CO;2

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Ambrizzi T (2005) Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J Clim 18(5):702–718

    Article  Google Scholar 

  • Colonello JH, Cortés F, Massa AM (2014) Species richness and reproductive modes of chondrichthyans in relation to temperature and fishing effort in the Southwestern Atlantic Shelf (34–54°S). Fish Res 160:8–17

    Article  Google Scholar 

  • Combes V, Matano RP (2018) The Patagonian shelf circulation: drivers and variability. Prog Oceanogr 167:24–43. https://doi.org/10.1016/j.pocean.2018.07.003 (ISSN 0079-6611)

    Article  Google Scholar 

  • Cortés F, Jaureguizar AJ, Menni RC, Guerrero RA (2011a) Ontogenetic habitat preferences of the narrownose smooth-hound shark, Mustelus schmitti, in two Southwestern Atlantic Coastal Systems. Hydrobiologia 661(1):445–456. https://doi.org/10.1007/s10750-010-0559-2

    Article  Google Scholar 

  • Cortés F, Jaureguizar AJ, Guerrero RA, Dogliotti A (2011b) Influence of estuarine and continental shelf water advection on the coastal movements of apron ray, Discopyge tschudii, in the Southwestern Atlantic. J Appl Ichthyol 27:1278–1285. https://doi.org/10.1111/j.1439-0426.2011.01821.x

    Article  Google Scholar 

  • De Wysiecki AM, Sánchez-Carnero N, Irigoyen AJ, Milessi AC, Colonello JH, Bovcon ND, Cortés F, Barbini SA, Cedrola PV, Coller NM, Jaureguizar AJ (2020) Using temporally explicit habitat suitability models to infer the migratory pattern of a large mobile shark. Can J Fish Aquat Sci 77(9):1529–1539. https://doi.org/10.1139/cjfas-2020-0036

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J, Park B, Peubey C, de Rosnay P, Tavolato C, Thépaut J, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Delgado AL, Jamet C, Loisel H, Vantrepotte V, Perillo GME, Piccolo MC (2014) Evaluation of the MODIS-aqua sea-surface temperature product in the inner and mid-shelves of southwest Buenos Aires Province, Argentina. Int J Remote Sens 35(1):306–320

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2(1):115–143

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18(8):1016–1022

    Article  Google Scholar 

  • Elisio M, Colonello JH, Cortés F, Jaureguizar AJ, Somoza GM, Macchi GJ (2017) Aggregations and reproductive events of the narrownose smooth-hound shark, Mustelus schmitti, in relation to temperature and depth in coastal waters of the southwestern Atlantic Ocean (38–42° S). Mar Freshw Res 68:732–742

    Article  Google Scholar 

  • Feldstein SB (2003) The dynamics of NAO teleconnection pattern growth and decay. Q J R Meteorol Soc 129:901–924

    Article  Google Scholar 

  • Flatau M, Kim Y-J (2013) Interaction between the MJO and polar circulations. J Clim 26(11):3562–3574

    Article  Google Scholar 

  • Framiñan MB (2005) On the physics, circulation and exchange processes of the Río de la Plata estuary and the adjacent shelf. Doctoral Dissertation. University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, p 486

    Google Scholar 

  • García M, Jaureguizar AJ, Protogino L (2010) Fish assemblages across the marine to low salinity transition zone of Rio de la Plata estuary, South America. Lat Am J Aquat Res 38(1):81–96. https://doi.org/10.3856/vol38-issue1-fulltext-8

    Article  Google Scholar 

  • Guerrero RA, Acha EM, Framiñan MB, Lasta CA (1997) Physical oceanography of the Río de la Plata Estuary Argentina. Cont Shelf Res 17(7):727–742

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) the life cycle of the Madden–Julian oscillation. J Atmos Sci 51:2225–2237. https://doi.org/10.1175/1520-0469(1994)051%3c2225:TLCOTM%3e2.0.CO;2

    Article  Google Scholar 

  • Jaureguizar AJ, Menni R, Lasta C, Guerrero R (2006) Fish assemblages of the Northern Argentine Coastal System: spatial patterns and their temporal variations. Fish Oceanogr 15(4):326–344

    Article  Google Scholar 

  • Jaureguizar AJ, Solari A, Cortés F, Milessi AC, Militelli MI, Camiolo MD, Luz Clara M, García M (2016) Fish diversity in the Río de la Plata and adjacent waters: an overview on the environment influence on its spatial and temporal structure. J Fish Biol 89:569–600

    Article  Google Scholar 

  • Jaureguizar AJ, Argemi F, Trobbiani G, Palam ED, Irigoyen AJ (2018) Large-scale migration of a school shark, Galeorhinus galeus, in the Southwestern Atlantic. Neotrop Ichthyol 16(1):e170050. https://doi.org/10.1590/1982-0224-20170050

    Article  Google Scholar 

  • Jaureguizar AJ, De Wysiecki A, Camiolo MD (2020) Environmental influence on the inter-annual demographic variation of the narrownose smooth-hound shark (Mustelus schmitti, Springer 1939) in the Northern Argentine Coastal System (El Rincón, 38–42°S). Mar Biol Res 16(8–9):600–615. https://doi.org/10.1080/17451000.2020.1868522

    Article  Google Scholar 

  • Jaureguizar AJ, De Wysiecki A, Camiolo MD, Luz Clara M (2021) Inter-annual fluctuation in the population structure of an estuarine fish: influence of environmental drivers. J Mar Syst 218:103526. https://doi.org/10.1016/j.jmarsys.2021.103526

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kara AB, Wallcraft AJ, Hulburt HE, Loh W-Y (2009) Quantifying SST errors from an OGCM in relation to atmospheric forcing variables. Ocean Model 29(1):43–57. https://doi.org/10.1016/j.ocemod.2009.03.001

    Article  Google Scholar 

  • Lago LS, Saraceno M, Piola AR, Ruiz-Etcheverry LA (2021) Volume transport variability on the northern argentine continental shelf from in situ and satellite altimetry data. J Geophys Res Oceans. https://doi.org/10.1029/2020JC016813

    Article  Google Scholar 

  • Lentini CAD, Campos EJD, Podestá GP (2000) The annual cycle of satellite derived sea surface temperature on the western South Atlantic shelf. Braz J Oceanogr 48(2):93–105

    Google Scholar 

  • Lercari D, Milessi AC, Vögler R, Velasco G, Jaureguizar AJ (2019) Modelos tróficos en el Atlántico Sud Occidental: evaluando la estructura y funcionamiento de ecosistemas costeros Ch. 2.3. In: Muniz P, Conde D, Venturini N, Brugnoli E (eds) “Ciencias Marino Costeras en el Umbral del Siglo XXI: Desafíos en Latinoamérica y el Caribe”. Sec. 2. Ecología manejo y gestión de recursos marino-costeros. AGT Editors, México, pp 315–345 (ISBN 978-607-7551-45-4)

    Google Scholar 

  • Luz Clara M, Simionato CG, Jaureguizar AJ (2019). Annual variability of sea surface temperature in the Northern Argentinean Continental Shelf. Geoacta. 43 (In press) ISSN 1852-7744

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123. https://doi.org/10.1175/1520-0469(1972)029%3c1109:DOGSCC%3e2.0.CO;2

    Article  Google Scholar 

  • Manta G, de Mello S, Trinchin R, Badagian J, Barreiro M (2018) The 2017 record marine heat wave in the southwestern Atlantic shelf. Geophys Res Lett 5(22):12–449

    Google Scholar 

  • Menni RC, Jaureguizar AJ, Stehmann MFW, Lucifora LO (2010) Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodivers Conserv 19:775–796. https://doi.org/10.1007/s10531-009-9734-z

    Article  Google Scholar 

  • Milessi AC, Bruno I, Cozzolino E, Allega L, Jaureguizar AJ (2018) Cambio climático global frente a las costas de Mar del Plata: ¿evidencias de tropicalización? Inf Invest INIDEP 131:11

    Google Scholar 

  • Mukarami T, Sumi A (1981) Large-scale aspects of the 1978–79 winter circulation over the greater MONEX region. Part II: long-period perturbations. J Meteorol Soc Jpn 59:646–671

    Article  Google Scholar 

  • Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15(12):1389–1407

    Article  Google Scholar 

  • Pimenta F, Garvine RW, Munchow A (2008) Observations of coastal upwelling off Uruguay downshelf of the Plata estuary, South America. J Mar Res 66(6):835–872

    Article  Google Scholar 

  • Podestá GP, Brown OB, Evans RH (1991) The annual cycle of satellite-derived sea surface temperature in the Southwesten Atlantic Ocean. J Climate 4(4):457–467

    Article  Google Scholar 

  • Pohl B, Fauchereau N, Reason CJC, Rouault M (2010) Relationships between the Antarctic Oscillation, the Madden–Julian Oscillation, and ENSO, and consequences for rainfall analysis. J Clim 23(2):238–254

    Article  Google Scholar 

  • Powell BS, Arango HG, Moore AM, Di Lorenzo E, Milliff RF, Foley D (2008) 4D VAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Model 25:173–1884

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rivas AL (2010) Spatial and temporal variability of satellite-derived sea surface temperature in the southwestern Atlantic Ocean, Continental Shelf Research, 30, 7, pp 752–760. ISSN. https://doi.org/10.1016/j.csr.2010.01.009

    Article  Google Scholar 

  • Rodrigues RR, Woollings T (2017) Impact of atmospheric blocking on South America in austral summer. J Clim 30(5):1821–1837

    Article  Google Scholar 

  • Rodrigues RR, Taschetto AS, Sen Gupta A, Foltz GR (2019) Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat Geosci. https://doi.org/10.1038/s41561-019-0393-8

    Article  Google Scholar 

  • Rodrigues Chaves RR, Nobre PJL (2004) Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic Convergence Zone. Geophys Res Lett. https://doi.org/10.1029/2003GL018647

    Article  Google Scholar 

  • Saraceno M, Simionato CG, Ruiz-Etcheverry LA (2014) Sea surface height trend and variability at seasonal and interannual time scales in the South Eastern South American continental shelf between 27°S and 40°S. Cont Shelf Res 91:82–94

    Article  Google Scholar 

  • Scasso L, Piola A (1988) Intercambio neto de agua entre el mar y la atmósfera en el Golfo San Matías. Oceanol Acta 15(1):13–31

    Google Scholar 

  • Simionato CG, Vera CS, Siegismund F (2005) Surface wind variability on seasonal and interannual scales over RíO de la Plata area. J Coastal Res 21(4):770–783

    Article  Google Scholar 

  • Simionato CG, Meccia VL, Dragani WC, Guerrero RA, Nuñez MN (2006) The Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: Barotropic response. J Geophys Res. https://doi.org/10.1029/2005JC003297

    Article  Google Scholar 

  • Simionato CG, Meccia VL, Guerrero RA, Dragani WC, Nuñez MN (2007) Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: 2. Currents’ vertical structure and its implications for the salt wedge structure. J Geophys Res 112:C07005. https://doi.org/10.1029/2006JC003815

    Article  Google Scholar 

  • Simionato CG, Luz Clara Tejedor M, Campetella C, Guerrero R, Moreira D (2010) Patterns of sea surface temperature variability on seasonal to subannual scales at and offshore the Río de la Plata Estuary. Cont Shelf Res 30:1983–1997

    Article  Google Scholar 

  • Stan C, Straus DM, Frederiksen JS, Lin H, Maloney ED, Schumacher C (2017) Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev Geophys 55:902–937. https://doi.org/10.1002/2016RG000538

    Article  Google Scholar 

  • Sterl A, Hazeleger W (2003) Coupled variability and air-sea interaction in the South Atlantic Ocean. Clim Dyn 21:559–571. https://doi.org/10.1007/s00382-003-0348-y

    Article  Google Scholar 

  • Tirabassi G, Masoller C, Barreiro M (2014) A study of the air-sea interaction in the South Atlantic Convergence Zone through Granger Causality. Int J Climatol 35(12):3440–3453

    Article  Google Scholar 

  • Trinchin R, Ortega L, Barreiro M (2019) Spatio-temporal characterization of summer coastal upwelling events in Uruguay South America. Reg Stud Marine Sci 31:100787

    Google Scholar 

  • Venegas SA, Mysak LA, Straub DN (1997) Atmosphere-ocean coupled variability in the South Atlantic. J Clim 10(11):2904–2920

    Article  Google Scholar 

  • Vera CS, Alvarez MS, Gonzalez PLM, Kiladis GN, Liebmann B (2017) Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim Dyn. https://doi.org/10.1007/s00382-017-3994-1

    Article  Google Scholar 

  • Wang J, Wen Z, Wu R, Guo Y, Chen Z (2016) The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intra-seasonal oscillation. Clim Dyn 46:3965–3977. https://doi.org/10.1007/soo382-015-2815-7

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003. https://doi.org/10.1029/2004RG000158

    Article  Google Scholar 

  • Zilli MT, Carvalho LMV, Lintner BR (2019) The poleward shift of South Atlantic Convergence Zone in recent decades. Clim Dyn 52:2545–2563. https://doi.org/10.1007/s00382-018-4277-1

    Article  Google Scholar 

Download references

Acknowledgements

SST data were provided by the NOAA CoastWatch Program, NOAA NESDIS Office of Satellite Data Processing and Distribution, and NASA’s Goddard Space Flight Center, OceanColor Web (https://coastwatch.pfeg.noaa.gov/infog/BA_ssta_las.html). Data of relevant atmospheric variables were obtained from the National Center for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset (Kalnay et al. 1996) through the IRI Data Library and from the ERA Interim reanalysis from the European Centre for Medium-Range Weather Forecasts (Dee et al. 2011). Outgoing Longwave Radiation (OLR) data, considered as a proxy of atmospheric convection, were obtained from the National Oceanic and Atmospheric Administration (NOAA) gridded dataset. This work is a contribution to the ANPCyT (National Agency for Scientific and Technological Research of Argentina) 2015-1934 and the UBACYT (Secretariat of Science and Technology—University of Buenos Aires) 20020190100200BA Projects. Dr. Luz Clara, Dr. Vera, Dr. Alvarez and Dr. Simionato’s salaries were paid by the CONICET (National Council of Scientific and Technical Research of Argentina). Dr. Jaureguizar’s salary was paid by the Scientific Research Commission (CIC) of Buenos Aires Province. INIDEP (National Institute for Fisheries Research and Development) contribution #2254.

Funding

This research was supported by the ANPCyT 2015-1934 and the UBACYT 20020190100200BA Projects. Dr. Luz Clara, Dr. Vera, Dr. Alvarez and Dr. Simionato’s salaries were paid by the CONICET. Dr. Jaureguizar’s salary was paid by the CIC-Provincia de Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moira Luz Clara.

Ethics declarations

Conflict of interest

‘Not applicable’. The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3442 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luz Clara, M., Alvarez, M.S., Vera, C. et al. Relationship between sea surface temperature anomalies in the Southwestern Atlantic Continental Shelf and atmospheric variability on intraseasonal timescales. Clim Dyn 59, 1539–1554 (2022). https://doi.org/10.1007/s00382-021-06058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06058-3

Keywords

Navigation