Skip to main content

The Indian summer monsoon and Indian Ocean Dipole connection in the IITM Earth System Model (IITM-ESM)

Abstract

The Indian Ocean Dipole (IOD) is recognised as an important driver of interannual climate variability over different regions of the globe, including the regional monsoon systems. In particular, positive (negative) phases of IOD tend to be associated with above-normal (below-normal) monsoon rainfall over the Indian subcontinent. Realistic simulation of the IOD and Indian summer monsoon connection, however, remains a challenge in many of the state-of-the-art climate models. This study presents an analysis of IOD and its links to the Indian monsoon based on the historical simulations from the IITM Earth System Model (IITM-ESM) and other models that participated in the 6th phase of Coupled Model Intercomparison Project (CMIP6). Our findings indicate that the IITM-ESM provides not only a fairly realistic simulation of the ocean–atmosphere coupled interactions and the Bjerknes feedback processes associated with IOD events but also better captures the summer monsoon precipitation response over the Indian subcontinent during IOD events, as compared to several CMIP6 models. The physical mechanisms contributing to the improved simulation of IOD and its monsoon connection in the IITM-ESM are evaluated in this study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Adler RF, Huffman GJ, Chang A et al (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167. https://doi.org/10.1175/1525-7541(2003)004%3c1147:TVGPCP%3e2.0.CO;2

    Article  Google Scholar 

  2. Alexander MA, Bladé I, Newman M et al (2002) The Atmospheric Bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  3. Annamalai H, Taguchi B, McCreary JP et al (2017) Systematic errors in South Asian Monsoon simulation: importance of equatorial Indian ocean processes. J Clim 30:8159–8178. https://doi.org/10.1175/JCLI-D-16-0573.1

    Article  Google Scholar 

  4. Ashok K (2004) Decadal variability of the Indian Ocean dipole. Geophys Res Lett 31:L24207. https://doi.org/10.1029/2004GL021345

    Article  Google Scholar 

  5. Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42:273–285. https://doi.org/10.1007/s11069-006-9091-0

    Article  Google Scholar 

  6. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502. https://doi.org/10.1029/2001GL013294

    Article  Google Scholar 

  7. Ayantika DC, Krishnan R, Singh M et al (2021) Understanding the combined effects of global warming and anthropogenic aerosol forcing on the South Asian monsoon. Clim Dyn. https://doi.org/10.1007/s00382-020-05551-5

    Article  Google Scholar 

  8. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063

    Article  Google Scholar 

  9. Behera SK, Ratnam JV (2018) Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD. Sci Rep 8:123. https://doi.org/10.1038/s41598-017-18396-6

    Article  Google Scholar 

  10. Behera SK, Krishnan R, Yamagata T (1999) Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys Res Lett 26:3001–3004. https://doi.org/10.1029/1999GL010434

    Article  Google Scholar 

  11. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829. https://doi.org/10.1111/j.2153-3490.1966.tb00303.x

    Article  Google Scholar 

  12. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172. https://doi.org/10.1175/1520-0493(1969)097%3c0163:ATFTEP%3e2.3.CO;2

    Article  Google Scholar 

  13. Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? MODEL IOD BIASES. Geophys Res Lett 40:1200–1205. https://doi.org/10.1002/grl.50208

    Article  Google Scholar 

  14. Cai W, Pan A, Roemmich D et al (2009) Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008. Geophys Res Lett 36:L08701. https://doi.org/10.1029/2008GL037038

    Article  Google Scholar 

  15. Cai W, Santoso A, Wang G et al (2014) Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510:254–258. https://doi.org/10.1038/nature13327

    Article  Google Scholar 

  16. Chu J-E, Ha K-J, Lee J-Y et al (2014) Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Clim Dyn 43:535–551. https://doi.org/10.1007/s00382-013-2002-7

    Article  Google Scholar 

  17. DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys Res Lett. https://doi.org/10.1029/2012GL051279

    Article  Google Scholar 

  18. Ek MB, Mitchell KE, Lin Y et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:2002JD003296. https://doi.org/10.1029/2002JD003296

    Article  Google Scholar 

  19. Eyring V, Bony S, Meehl GA et al (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  20. Feng M, Meyers G, Wijffels S (2001) Interannual upper ocean variability in the tropical Indian Ocean. Geophys Res Lett 28:4151–4154. https://doi.org/10.1029/2001GL013475

    Article  Google Scholar 

  21. Griffies SM, Schmidt M, Herzfeld M (2009) Elements of MOM4p1, NOAA/Geophysical Fluid Dynamics Laboratory Ocean Group Technical Report No. 6, 444

  22. Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26:520–533. https://doi.org/10.1175/WAF-D-10-05038.1

    Article  Google Scholar 

  23. Iizuka S, Matsuura T, Yamagata T (2000) The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys Res Lett 27:3369–3372. https://doi.org/10.1029/2000GL011484

    Article  Google Scholar 

  24. Jain S, Scaife AA, Mitra AK (2019) Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems. Clim Dyn 52:5291–5301. https://doi.org/10.1007/s00382-018-4449-z

    Article  Google Scholar 

  25. Kistler R, Kalnay E, Collins W et al (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268. https://doi.org/10.1175/1520-0477(2001)082%3c0247:TNNYRM%3e2.3.CO;2

    Article  Google Scholar 

  26. Krishnan R, Swapna P (2009) Significant influence of the Boreal Summer Monsoon flow on the Indian Ocean response during dipole events. J Clim 22:5611–5634. https://doi.org/10.1175/2009JCLI2176.1

    Article  Google Scholar 

  27. Krishnan R, Sundaram S, Swapna P et al (2011) The crucial role of ocean–atmosphere coupling on the Indian monsoon anomalous response during dipole events. Clim Dyn 37:1–17. https://doi.org/10.1007/s00382-010-0830-2

    Article  Google Scholar 

  28. Krishnan R, Gnanaseelan C, Sanjay J et al (2020) Introduction to climate change over the indian region. In: Krishnan R, Sanjay J, Gnanaseelan C et al (eds) Assessment of climate change over the indian region: a report of the ministry of earth sciences (MoES), Government of India. Springer, Singapore, pp 1–20

    Chapter  Google Scholar 

  29. Kumar SP, Madhupratap M, Kumar MD et al (2001) High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection. Curr Sci 81:1633–1638

    Google Scholar 

  30. Lau N-C, Nath MJ (1996) The role of the “Atmospheric Bridge” in linking Tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057. https://doi.org/10.1175/1520-0442(1996)009%3c2036:TROTBI%3e2.0.CO;2

    Article  Google Scholar 

  31. Lau N-C, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20. https://doi.org/10.1175/1520-0442(2003)016%3c0003:AOVITI%3e2.0.CO;2

    Article  Google Scholar 

  32. Lee CM, Jones BH, Brink KH, Fischer AS (2000) The upper-ocean response to monsoonal forcing in the Arabian Sea: seasonal and spatial variability. Deep Sea Res Part II 47:1177–1226. https://doi.org/10.1016/S0967-0645(99)00141-1

    Article  Google Scholar 

  33. Li Z, Lin X, Cai W (2017) Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes. Sci Rep 7:4929. https://doi.org/10.1038/s41598-017-05225-z

    Article  Google Scholar 

  34. Liu L, Yu W, Li T (2011) Dynamic and thermodynamic air-sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 models*. J Clim 24:4941–4958. https://doi.org/10.1175/2011JCLI4041.1

    Article  Google Scholar 

  35. Liu L, Xie S-P, Zheng X-T et al (2014) Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim Dyn 43:1715–1730. https://doi.org/10.1007/s00382-013-2000-9

    Article  Google Scholar 

  36. Ma J, Liu H, Lin P, Zhan H (2015) Effects of the interannual variability in chlorophyll concentrations on sea surface temperatures in the east tropical Indian Ocean. J Geophys Res 120:7015–7027. https://doi.org/10.1002/2015JC010862

    Article  Google Scholar 

  37. Madhupratap M, Nair KNV, Gopalakrishnan TC et al (2001) Arabian Sea oceanography and fisheries of the west coast of India. Curr Sci 81:355–361

    Google Scholar 

  38. McKenna S, Santoso A, Gupta AS et al (2020) Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Sci Rep 10:11500. https://doi.org/10.1038/s41598-020-68268-9

    Article  Google Scholar 

  39. McPhaden MJ, Wang Y, Ravichandran M (2015) Volume transports of the Wyrtki jets and their relationship to the Indian Ocean Dipole. J Geophys Res 120:5302–5317. https://doi.org/10.1002/2015JC010901

    Article  Google Scholar 

  40. Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Ch M (ed) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  41. Meyers G, McIntosh P, Pigot L, Pook M (2007) The Years of El Niño, La Niña, and Interactions with the Tropical Indian Ocean. J Clim 20:2872–2880. https://doi.org/10.1175/JCLI4152.1

    Article  Google Scholar 

  42. Murtugudde RG, Signorini SR, Christian JR et al (1999) Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–1998. J Geophys Res 104:18351–18366. https://doi.org/10.1029/1999JC900135

    Article  Google Scholar 

  43. Murtugudde R, McCreary JP Jr, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306. https://doi.org/10.1029/1999JC900294

    Article  Google Scholar 

  44. Pokhrel S, Saha SK, Dhakate A et al (2016) Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error. Clim Dyn 46:2305–2326. https://doi.org/10.1007/s00382-015-2703-1

    Article  Google Scholar 

  45. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306

    Google Scholar 

  46. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett. https://doi.org/10.1029/2008GL035143

    Article  Google Scholar 

  47. Rajeevan M, Unnikrishnan CK, Bhate J et al (2012) Northeast monsoon over India: variability and prediction. Meteorol Appl 19:226–236. https://doi.org/10.1002/met.1322

    Article  Google Scholar 

  48. Ramesh KV, Krishnan R (2005) Coupling of mixed layer processes and thermocline variations in the Arabian Sea. J Geophys Res. https://doi.org/10.1029/2004JC002515

    Article  Google Scholar 

  49. Ramu DA, Sabeerali CT, Chattopadhyay R et al (2016) Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J Geophys Res 121:2205–2221. https://doi.org/10.1002/2015JD024629

    Article  Google Scholar 

  50. Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Res Part II 49:1549–1572. https://doi.org/10.1016/S0967-0645(01)00158-8

    Article  Google Scholar 

  51. Rao SA, Goswami BN, Sahai AK et al (2019) Monsoon mission: a targeted activity to improve monsoon prediction across scales. Bull Am Meteorol Soc 100:2509–2532. https://doi.org/10.1175/BAMS-D-17-0330.1

    Article  Google Scholar 

  52. Reppin J, Schott FA, Fischer J, Quadfasel D (1999) Equatorial currents and transports in the upper central Indian Ocean: Annual cycle and interannual variability. J Geophys Res 104:15495–15514. https://doi.org/10.1029/1999JC900093

    Article  Google Scholar 

  53. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteorol Soc 91:1015–1058. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  54. Saha S, Moorthi S, Wu X et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  55. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. https://doi.org/10.1038/43854

    Article  Google Scholar 

  56. Sandeep N, Swapna P, Krishnan R et al (2020) South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim Dyn 54:3507–3524. https://doi.org/10.1007/s00382-020-05180-y

    Article  Google Scholar 

  57. Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123. https://doi.org/10.1016/S0079-6611(01)00083-0

    Article  Google Scholar 

  58. Schott FA, Xie S-P, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. https://doi.org/10.1029/2007RG000245

    Article  Google Scholar 

  59. Singh M, Krishnan R, Goswami B et al (2020) Fingerprint of volcanic forcing on the ENSO–Indian monsoon coupling. Sci Adv 6:eaba8164. https://doi.org/10.1126/sciadv.aba8164

    Article  Google Scholar 

  60. Slingo JM, Annamalai H (2000) 1997: the El Niño of the century and the response of the Indian Summer Monsoon. Mon Weather Rev 128:1778–1797. https://doi.org/10.1175/1520-0493(2000)128%3c1778:TENOOT%3e2.0.CO;2

    Article  Google Scholar 

  61. Sperber KR, Annamalai H, Kang I-S et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. https://doi.org/10.1007/s00382-012-1607-6

    Article  Google Scholar 

  62. Sreejith OP, Panickal S, Pai S, Rajeevan M (2015) An Indian Ocean precursor for Indian summer monsoon rainfall variability. Geophys Res Lett 42:9345–9354. https://doi.org/10.1002/2015GL065950

    Article  Google Scholar 

  63. Susanto RD, Gordon AL, Zheng Q (2001) Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys Res Lett 28:1599–1602. https://doi.org/10.1029/2000GL011844

    Article  Google Scholar 

  64. Swaminathan MS, Kesavan PC (2012) Agricultural research in an era of climate change. Agric Res 1:3–11. https://doi.org/10.1007/s40003-011-0009-z

    Article  Google Scholar 

  65. Swapna P, Krishnan R (2008) Equatorial undercurrents associated with Indian Ocean Dipole events during contrasting summer monsoons. Geophys Res Lett 35:L14S04. https://doi.org/10.1029/2008GL033430

    Article  Google Scholar 

  66. Swapna P, Roxy MK, Aparna K et al (2015) The IITM earth system model: transformation of a seasonal prediction model to a long-term climate model. Bull Am Meteorol Soc 96:1351–1367. https://doi.org/10.1175/BAMS-D-13-00276.1

    Article  Google Scholar 

  67. Swapna P, Krishnan R, Sandeep N et al (2018) Long-term climate simulations using the IITM Earth System Model (IITM-ESMv2) with focus on the south Asian Monsoon. J Adv Model Earth Syst 10:1127–1149. https://doi.org/10.1029/2017MS001262

    Article  Google Scholar 

  68. Tang D, Kawamura H, Luis AJ (2002) Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sens Environ 81:82–89. https://doi.org/10.1016/S0034-4257(01)00334-0

    Article  Google Scholar 

  69. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  70. Titchner HA, Rayner NA (2014) The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res 119:2864–2889. https://doi.org/10.1002/2013JD020316

    Article  Google Scholar 

  71. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nature Clim Change 2:587–595. https://doi.org/10.1038/nclimate1495

    Article  Google Scholar 

  72. Vinayachandran PN, Kurian J, Neema CP (2007) Indian Ocean response to anomalous conditions in 2006. Geophys Res Lett. https://doi.org/10.1029/2007GL030194

    Article  Google Scholar 

  73. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360. https://doi.org/10.1038/43848

    Article  Google Scholar 

  74. Wyrtki K (1973) An equatorial jet in the Indian Ocean. Science 181:262–264. https://doi.org/10.1126/science.181.4096.262

    Article  Google Scholar 

  75. Yamagata T, Behera SK, Luo J-J et al (2004) Coupled Ocean-atmosphere variability in the Tropical Indian Ocean. Earth’s climate. American Geophysical Union (AGU), Washington, pp 189–211

    Google Scholar 

  76. Zheng X-T, Xie S-P, Du Y et al (2013) Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble. J Clim 26:6067–6080. https://doi.org/10.1175/JCLI-D-12-00638.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, IITM for providing support to carry out this research. The authors also thank the Ministry of Earth Sciences (MoES), Govt. of India, for supporting CMIP6 activities using IITM-ESM. We also thank the Editor and two anonymous Reviewers for their valuable suggestions. Authors acknowledge the World Climate Research Program (WCRP) and CMIP for availing CMIP6 datasets. The IITM-ESM CMIP6 simulations and all other datasets used in the study are publicly available and are described in the data and methodology section. The IITM-ESM model simulations were performed on the High-Performance Computing System at IITM. Freeware Ferret and NCL are used for the analysis of model simulations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Swapna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 659 KB)

Appendix A

Appendix A

For selecting the best CMIP6 models in simulating the tropical IO SST variability a skill score constructed based on the sum of pattern correlation coefficients of the annual mean SST, monthly variance of SST, EOF1 and EOF2 of monthly SSTA over the tropical IO [40oE-120oE, 20oS-20oN]. This method is adapted from Chu et al. (2014). Table S2 shows the best 8 models and their skill scores.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prajeesh, A.G., Swapna, P., Krishnan, R. et al. The Indian summer monsoon and Indian Ocean Dipole connection in the IITM Earth System Model (IITM-ESM). Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05999-z

Download citation

Keywords

  • Indian Ocean Dipole
  • Bjerknes process
  • Moisture transport
  • IOD-monsoon association