Skip to main content

Future climate trends of subtropical cyclones in the South Atlantic basin in an ensemble of global and regional projections

Abstract

The South Atlantic Ocean (SAO) is characterized by the development of different types of synoptic scale cyclones, which affect the weather and climate of South America. For the first time, we obtained the long term trend of subtropical cyclones (SCs) climatology over the SAO through two ensembles under RCP8.5 scenario. Regional Climate Model version 4 (RegCM4) projections were driven by three global climate models (GCMs) from CMIP5. SCs are obtained by applying three algorithms: (1) for tracking all cyclones based on relative vorticity; (2) to describe the thermal structure of the cyclones; and (3) for selecting only the SCs. Ensemble means are able to capture the main SCs characteristics shown by ERA-Interim reanalysis in the present climate (1979–2005), such as the main region of formation (near the southeastern Brazilian coast), track density, seasonality (higher frequency in austral summer) and lifetime (~ 3 days). The RegCM4 and GCMs ensembles project a negative and statistically significant trend in the frequency of SCs in the future climate (2050–2080) near the southeastern coast of Brazil. The projections also indicate a greater negative trend of SCs than for all cyclones. This would be a response to the future increase in the mean sea level pressure (expansion of South Atlantic subtropical anticyclone), which in turn leads to a change in the low-level circulation acting to decrease the moisture transport to the main region of SCs development. Though the SCs frequency will decrease in the future, they are projected to be more intense due to stronger convective forcing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Akhtar N, Brauch J, Dobler A et al (2014) Medicanes in an ocean–atmosphere coupled regional climate model. Nat Hazards Earth Syst Sci 14:2189–2201

    Article  Google Scholar 

  2. Bonatti JP, Rao VB, Dias PLS (2006) On the westward propagation of Catarina Storm. In: 8th international conference on southern hemisphere meteorology and oceanography, 2006, Foz do Iguaçu. Proceedings of 8th ICSHMO, 2006, vol 1, pp 1659–1675

  3. Brasiliense CS, Dereczynski CP, Satyamurty P, Chou SC, Santos RS, Calado RN (2017) Synoptic analysis of an intense rainfall event in Paraíba do Sul river basin in southeast Brazil. R Meteorol Soc. https://doi.org/10.1002/met.1670

    Article  Google Scholar 

  4. Cavicchia L, Pepler A, Dowdy A, Evans J, Di Luca A, Walsh K (2020) Future changes in the occurrence of hybrid cyclones: the added value of cyclone classification for the east Australian low-pressure systems. Geophys Res Lett 47:e2019GL085751. https://doi.org/10.1029/2019GL085751

    Article  Google Scholar 

  5. Crespo NM, da Rocha RP, Sprenger M, Wernli H (2020) A potential vorticity perspective on cyclogenesis over center-eastern South America. Int J Climatol. https://doi.org/10.1002/joc.6644

    Article  Google Scholar 

  6. da Rocha RP, Sugahara S, Silveira RB (2004) Sea waves generated by extratropical cyclones in the south atlantic ocean: hindcast and validation against altimeter data. Weather Forecast 19:398–410. https://doi.org/10.1175/1520-0434(2004)019%3c0398:SWGBEC%3e2.0.CO;2

    Article  Google Scholar 

  7. da Rocha RP, Reboita MS, Dutra LMM, Llopart M, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. In: Submetido no Climatic Change

  8. da Rocha RP, Reboita MS, Gozzo LF, Dutra LMM, de Jesus EM (2019) Subtropical cyclones over the oceanic basins: a review. Ann N Y Acad Sci 2018:1–19. https://doi.org/10.1111/nyas.13927

    Article  Google Scholar 

  9. de Jesus EM, da Rocha RP, Crespo NM, Reboita MS, Gozzo LF (2021) Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Clim Dyn 56:537–557. https://doi.org/10.1007/s00382-020-05490-1

    Article  Google Scholar 

  10. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  11. Di Luca A, Evans J, Pepler A et al (2016) Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble. J South Hemisph Earth Syst Sci 66:108–124

    Google Scholar 

  12. Dias Pinto JR, Reboita MS, da Rocha RP (2013) Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J Geophys Res Atmos 118:10870–10883

    Article  Google Scholar 

  13. Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Climate 25:6646–6665

    Article  Google Scholar 

  14. Dutra LMM, da Rocha RP, Lee RW et al (2017) Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Q J R Meteorol Soc 143:1539–1553

    Article  Google Scholar 

  15. Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  16. Evans JL, Braun A (2012) A climatology of subtropical cyclones in the South Atlantic. J Clim 25:7328–7340

    Article  Google Scholar 

  17. Evans JL, Guishard MP (2009) Atlantic subtropical storms. Part I: diagnostic criteria and composite analysis. Mon Weather Rev 137(7):2065–2080

    Article  Google Scholar 

  18. Feng J, Li JP, Zhu JL, Li F, Sun C (2015) Simulation of the equatorially asymmetric mode of the Hadley circulation in CMIP5 models. Adv Atmos Sci 32(8):1129–1142. https://doi.org/10.1007/s00376-015-4157-0

    Article  Google Scholar 

  19. Gaertner MÁ, González-Alemán JJ, Romera R et al (2018) Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution. Clim Dyn 51:1041–1057. https://doi.org/10.1007/s00382-016-3456-1

    Article  Google Scholar 

  20. Gan MA, Rao BV (1991) Surface cyclogenesis over South America. Mon Wea Rev 119:293–302

    Article  Google Scholar 

  21. Gillett ZE, Hendon HH, Arblaster JM, Lim EP (2021) Tropical and extratropical influences on variability of the Southern Hemisphere wintertime subtropical jet. J Clim. https://doi.org/10.1175/JCLI-D-20-0460.1

    Article  Google Scholar 

  22. Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  23. Giorgi F (2014) Introduction to the special issue: the phase I CORDEX RegCM4 hyper-matrix (CREMA) experiment. Clim Change 125:1–5. https://doi.org/10.1007/s10584-014-1166-4

    Article  Google Scholar 

  24. Gozzo LF, da Rocha RP, Reboita MS, Sugahara S (2014) Subtropical cyclones over the southwestern South Atlantic: climatological aspects and case study. J of Clim 27:8543–8562

    Article  Google Scholar 

  25. Gozzo LF, da Rocha RP, Gimeno L et al (2017) Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J Geophys Res Atmos 122:5636–5653

    Article  Google Scholar 

  26. Gramcianinov CB, Hodges KI, Camargo R (2019) The properties and genesis environments of South Atlantic cyclones. Clim Dyn 53:4115–4140

    Article  Google Scholar 

  27. Gramcianinov CB, Campos RM, GuedesSoares C, de Camargo R (2020) Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean Eng 213:107745. https://doi.org/10.1016/j.oceaneng.2020.107745

    Article  Google Scholar 

  28. Guishard MP, Nelson EA, Evans JL, Hart RE, O’Connell DG (2007) Bermuda subtropical storms. Meteorol Atmos Phys 97(1):239–253

    Article  Google Scholar 

  29. Guishard MP (2006) Atlantic subtropical storms: climatology and characteristics. In: Tese (Doutorado em Meteorologia), Dept. of Meteorology, The Pennsylvania State University, University Park, PA, p 158

  30. Hart RE (2003) A cyclone phase space derived from thermal wind and thermal asymmetry. Mon Weather Rev 131:585–616

    Article  Google Scholar 

  31. Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  32. Hoskins BJ, Hodges KI (2005) A new perspective on southern hemisphere storm tracks. J Clim 18:4108–4129

    Article  Google Scholar 

  33. Ji F, Evans JP, Argueso D et al (2015) Using large-scale diagnostic quantities to investigate change in East Coast Lows. Clim Dyn 45:2443–2453

    Article  Google Scholar 

  34. Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). In: National center for atmospheric research tech note NCAR/TN-420+STR, NCAR, Boulder

  35. Kruger LF, Da-Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim Change. https://doi.org/10.1007/s10584-011-0374-4

    Article  Google Scholar 

  36. Lakkis SG, Canziani PO, Rodriguez JO, Yuchechen AE, O’Neill A, Albers KH, Hodges K (2021) Early 21st Century cyclone climatology: a 3D perspective. Basic characterization. Int J Climatol. https://doi.org/10.1002/joc.7056

    Article  Google Scholar 

  37. Martin GM et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev Discuss 4:765–841

    Google Scholar 

  38. McTaggart-Cowan R, Bosart L, Davis CA, Atallah EH, Gyakum JR, Emanuel KA (2006) Analysis of hurricane catarina (2004). Mon Weather Rev 134:3029–3053. https://doi.org/10.1175/MWR3330.1

    Article  Google Scholar 

  39. Menzel ME, Waugh D, Grise K (2019) Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophys Res Lett 46(12):7045–7053

    Article  Google Scholar 

  40. Mizuta R, Matsueda M, Endo H, Yukimoto S (2011) Future change in extratropical cyclones associated with change in the upper troposphere. J Clim 24:6456–6470

    Article  Google Scholar 

  41. Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 636(105):29579–29594

    Article  Google Scholar 

  42. Pezza AB, Simmonds I (2005) The first South Atlantic hurricane: unprecedented blocking, low shear and climate change. Geophys Res Lett 32:L15712

    Article  Google Scholar 

  43. Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn. https://doi.org/10.1007/s00382-009-0668-7

    Article  Google Scholar 

  44. Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38:2866–2879

    Article  Google Scholar 

  45. Reboita MS, da Rocha RP, Oliveira DMD (2019a) Key features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmosphere 10(1):6. https://doi.org/10.3390/atmos10010006

    Article  Google Scholar 

  46. Reboita MS, Oliveira DM, da Rocha RP, Dutra LMM (2019b) Subtropical cyclone Anita’s potential to tropical transition under warmer sea surface temperature scenarios. Geophys Res Lett. https://doi.org/10.1029/2019GL083415

    Article  Google Scholar 

  47. Reboita MS, Reale M, da Rocha RP, Giorgi F, Giuliani G, Coppola E, Nino RBL, Llopart M, Torres JA, Cavazos T (2020) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn. https://doi.org/10.1007/s00382-020-05317-z

    Article  Google Scholar 

  48. Reboita MS, Crespo NM, Dutra LMM, Silva BA, Capucin BC, da Rocha RP (2021) Iba: the first pure tropical cyclogenesis over the western South Atlantic ocean. JGR Atmos. https://doi.org/10.1029/2020JD033431

    Article  Google Scholar 

  49. Riahi K, Krey V, Rao S, Chirkov V, Fischer G, Kolp P, Kindermann G, Nakicenovic N, Rafai P (2011) RCP-85: exploring the consequence of high emission trajectories. Clim Change. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  50. Roberts MJ et al (2014) Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. Am Meteorol Soc. https://doi.org/10.1175/JCLI-D-14-00131.1

    Article  Google Scholar 

  51. Romero R, Emanuel K (2013) Medicane risk in a changing climate. J Geophys Res Atmos 118:5992–6001

    Article  Google Scholar 

  52. Romero R, Emanuel K (2017) Climate change and hurricane-like extratropical cyclones: projections for North Atlantic polar lows and medicanes based on CMIP5 models. J Clim 30:279–299

    Article  Google Scholar 

  53. Ruela R, Sousa MC, de Castro M, Dias JM (2020) Global and regional evolution of sea surface temperature under climate change. Glob Planet Change 190:103190

    Article  Google Scholar 

  54. Santos AF, Mendonça AM, Bonatti JP, De Mattos JGZ, Kubota PY, Freitas SR, Silva Dias MAF, Ramirez E, Camayo R (2008) Evaluation of the CPTEC/AGCM wind forecasts during the hurricane Catarina occurrence. Adv Geosci 14:317–326. https://doi.org/10.5194/adgeo-14-317-2008

    Article  Google Scholar 

  55. Tawfik AB, Steiner AL (2011) The role of soil ice in land–atmosphere coupling over the United States: a soil moisture precipitation winter feedback mechanism. J Geophys Res 116:D02113

    Google Scholar 

  56. Tous M, Romero R (2013) Meteorological environments associated with medicane development. Int J Climatol 33:1–14

    Article  Google Scholar 

  57. Tous M, Zappa G, Romero R, Shaffrey L, Vidale PL (2016) Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model. Clim Dyn 47:1913–1924. https://doi.org/10.1007/s00382-015-2941-2

    Article  Google Scholar 

  58. Vianna ML, Menezes VV, Pezza AB et al (2010) Interactions between Hurricane Catarina (2004) and warm core rings in the South Atlantic Ocean. J Geophys Res 115:C07002

    Google Scholar 

  59. Vigh JL, Schubert WH (2009) Rapid development of the tropical cyclone warm core. J Atmos Sci 66:3335–3350

    Article  Google Scholar 

  60. Walsh K, Giorgi F, Coppola E (2014) Mediterranean warm-core cyclones in a warmer world. Clim Dyn 42:1053–1066

    Article  Google Scholar 

  61. Yang M, Zhang GJ, Sun D (2018) Precipitation and moisture in four leading CMIP5 models: biases across large-scale circulation regimes and their attribution to dynamic and thermodynamic factors. J Clim. https://doi.org/10.1175/JCLI-D-17-0718.1

    Article  Google Scholar 

  62. Zhang W, Villarini G, Scoccimarro E, Roberts M, Vidale PL, Vanniere B, Caron L-P, Putrasahan D, Roberts C, Senan R, Moine M-P (2021) Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Clim Dyn. https://doi.org/10.1007/s00382-021-05707-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants #430314/2018-3, #304949/2018-3, #420262/2018-0, #305304/2017-8, #306488/2020-5) and PETROBRAS (2017/00671-3) for financial support.

Funding

(a) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). (b) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). (c) PETROBRAS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Marcos de Jesus.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1110 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Jesus, E.M., da Rocha, R.P., Crespo, N.M. et al. Future climate trends of subtropical cyclones in the South Atlantic basin in an ensemble of global and regional projections. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05958-8

Download citation

Keywords

  • RegCM4
  • GCMs-CMIP5
  • Subtropical cyclones
  • South Atlantic basin
  • Climate projections
  • CORDEX