Skip to main content

Southern African monsoon: intraseasonal variability and monsoon indices

Abstract

Southern African (SAF) summer monsoon rainfall varies over a range of timescales. Here the emphasis is placed on its intraseasonal variability (ISV), which is of great importance for agricultural production, water resources management, and subseasonal prediction, but synoptic variability is also considered. Rotated modes of ISV are determined based on daily rainfall gauge data (1979–2005) in eastern SAF. One of the leading modes exhibits strongest factor loadings over the core monsoon region, and is associated with variations in the monsoon circulation. This mode exists in the 10–20, 20–30 and 30–90 day bands of ISV. Spectral analysis, as well as lead-lag composite anomalies keyed to its positive and negative phases in each band confirm oscillations with periods of 12, 24 and 40 days, also present in ISV of South America monsoon. The 12-day oscillation is associated with the quasi-biweekly oscillation originated from Rossby waves in the extratropical westerly belt. The 24 and 40 day oscillations are linked to tropical convection and involve tropical and extratropical teleconnections between South America and SAF, with related convection anomalies over tropical South America/Atlantic Ocean playing a role in the eastward propagation of anomalies towards SAF. In the 30–90 day band, the oscillation is clearly associated with the MJO, with the positive phase more concentrated in MJO phases 1 and 2. A monsoon precipitation index (MPI) is proposed to help characterize, monitor and predict active and break monsoon spells. It is based on the average standardized precipitation anomaly over a selected area with the strongest precipitation variability in the core monsoon region over land, and represents well the monsoon core variability. Monsoon circulation indices associated with the MPI are also defined, since prediction skills are better for circulation than precipitation. Besides, these indices indicate the monsoon circulation features that most affect rainfall variability in different parts of SAF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Barimalala R, Desbiolles F, Blamey RC, Reason CJC (2018) Madagascar influence on the South Indian Ocean Convergence Zone, the Mozambique channel trough and Southern African Rainfall. Geophys Res Lett 45:11380–11389. https://doi.org/10.1029/2018GL079964

    Article  Google Scholar 

  2. Barimalala R, Blamey RC, Desbiolles F, Reason CJC (2020) Variability in the Mozambique Channel Trough and impacts on Southeast African Rainfall. J Clim 33:749–765

    Article  Google Scholar 

  3. Chen M, Shi W, Xie P, Silva VBS, Kousky VE, Wayne Higgins R, Janowiak JE (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. https://doi.org/10.1029/2007JD009132

    Article  Google Scholar 

  4. Driver P, Reason CJC (2017) Variability in the Botswana High and its relationships with rainfall and temperature characteristics over southern Africa. Int J Climatol 37:570–581. https://doi.org/10.1002/joc.5022

    Article  Google Scholar 

  5. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  6. Grimm AM (2019) Madden–Julian Oscillation impacts on South American summer monsoon season: precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Clim Dyn 53:907–932. https://doi.org/10.1007/s00382-019-04622-6

    Article  Google Scholar 

  7. Grimm AM, Reason CJC (2015) Intraseasonal Teleconnections between South America and South Africa. J Clim 28:9489–9497. https://doi.org/10.1175/JCLI-D-15-0116.1

    Article  Google Scholar 

  8. Grimm AM, Saboia JPJ (2015) Interdecadal variability of the South American precipitation in the monsoon season. J Clim 28:755–775. https://doi.org/10.1175/JCLI-D-14-00046.1

    Article  Google Scholar 

  9. Grimm AM, Hakoyama LR, Scheibe LA (2021) Active and break phases of the South American summer monsoon: MJO influence and subseasonal prediction. Clim Dyn. https://doi.org/10.1007/s00382-021-05658-3

    Article  Google Scholar 

  10. Harrison MSJ (1984) A generalized classification of South African summer rain-bearing synoptic systems. J Climatol 4:547–560. https://doi.org/10.1002/joc.3370040510

    Article  Google Scholar 

  11. Hart NCG, Reason CJC, Fauchereau N (2013) Cloud bands over southern Africa: seasonality, contribution to rainfall variability and modulation by the MJO. Clim Dyn 41:1199–1212

    Article  Google Scholar 

  12. Hart NCG, Washington R, Maidment RI (2019) Deep convection over Africa: annual cycle, ENSO, and trends in the hotspots. J Clim 32:8791–8811. https://doi.org/10.1175/JCLI-D-19-0274.1

    Article  Google Scholar 

  13. Howard E, Washington R (2019) Drylines in southern Africa: rediscovering the congo air boundary. J Clim 32:8223–8242. https://doi.org/10.1175/JCLI-D-19-0437.1

    Article  Google Scholar 

  14. Howard E, Washington R, Hodges KI (2019) Tropical lows in southern Africa: Tracks, rainfall contributions, and the role of ENSO. J Geophys Res Atmos 124:11009–11032

    Article  Google Scholar 

  15. INAM (2019) Informação Sobre a Situação Meteorológica Nacional. In: Inst. Nac. Meteorol. https://www.facebook.com/meteo.maputo/. Accessed 26 Apr 2019

  16. INGC (2019) Ponto de Situação: Ciclone IDAI (Dados preliminares até 12 de Abril de 2019). In: Inst. Nac. Gestão Calamidades. https://www.facebook.com/INGC.Mocambique/photos/a.304579886870732/328819124446808/?type=3&theater. Accessed 20 Apr 2019

  17. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  18. Jury MR (1999) Intra-seasonal convective variability over southern Africa: principal component analysis of pentad outgoing-longwave radiation departures 1976–1994. Theor Appl Climatol 62:133–146. https://doi.org/10.1007/s007040050079

    Article  Google Scholar 

  19. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200. https://doi.org/10.1007/BF02289233

    Article  Google Scholar 

  20. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy J, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  21. Kikuchi K, Wang B (2009) Global perspective of the Quasi–Biweekly oscillation. J Clim 22:1340–1359

    Article  Google Scholar 

  22. Levey KM, Jury MR (1996) Composite intraseasonal oscillations of convection over southern Africa. J Clim 9:1910–1920. https://doi.org/10.1175/1520-0442(1996)009<1910:CIOOCO>2.0.CO;2

    Article  Google Scholar 

  23. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  24. Macambaco MP (2016) Climate variations in southeastern Africa (SEA) and their possible teleconnections with South America (SA). Master Thesis at Federal University of Parana

  25. Macron C, Richard Y, Garot T, Bessafi M, Pohl B, Ratiarison A, Razafindrabe A (2016) Intraseasonal rainfall variability over Madagascar. Mon Weather Rev 144:1877–1885

    Article  Google Scholar 

  26. Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2

  27. Manhique AJ, Reason CJC, Rydberg L, Fauchereau N (2011) ENSO and Indian Ocean sea surface temperatures and their relationships with tropical temperate troughs over Mozambique and the Southwest Indian Ocean. Int J Climatol 31:1–13. https://doi.org/10.1002/joc.2050

    Article  Google Scholar 

  28. Manhique AJ, Reason CJC, Silinto B, Zucula J, Raiva I, Congolo F, Mavume AF (2015) Extreme rainfall and floods in southern Africa in January 2013 and associated circulation patterns. Nat Hazards 77:679–691. https://doi.org/10.1007/s11069-015-1616-y

    Article  Google Scholar 

  29. Mapande AT, Reason CJC (2005) Links between rainfall variability on intraseasonal and interannual scales over western Tanzania and regional circulation and SST patterns. Meteorol Atmos Phys Res 89:215–234. https://doi.org/10.1007/s00703-005-0130-2

    Article  Google Scholar 

  30. Mason SJ, Jury MR (1997) Climatic variability and change over southern Africa: a reflection on underlying processes. Prog Phys Geogr 21:23–50. https://doi.org/10.1177/030913339702100103

    Article  Google Scholar 

  31. Mchugh MJ, Rogers JC (2001) North Atlantic oscillation influence on precipitation variability around the southeast African Convergence Zone. J Clim 14:3631–3642

    Article  Google Scholar 

  32. Mitchell, Jr. JM, Dzerdzeevskii B, Flohn H, Hofmeyr WL, Lamb HH, Rao KN, Walléen CC (1966) Climatic change: report of a working group of the Commission for Climatology. WMO technical note No. 79. WMO, Geneva, Switzerland

  33. Mo KC (1999) Alternating wet and dry episodes over California and intraseasonal oscillations. Mon Wea Rev 127:2759–2776

    Article  Google Scholar 

  34. Mo KC, Nogués-Paegle J (2001) The Pacific-South American modes and their downstream effects. Int J Climatol 21:1211–1229. https://doi.org/10.1002/joc.685

    Article  Google Scholar 

  35. Nicholson SE (2000) The nature of rainfall variability over Africa on time scales of decades to millenia. Glob Planet Change 26:137–158. https://doi.org/10.1016/S0921-8181(00)00040-0

    Article  Google Scholar 

  36. Nicholson SE (2018) The ITCZ and the seasonal cycle over equatorial Africa. Bull Am Meteorol Soc 99:337–348. https://doi.org/10.1175/BAMS-D-16-0287.1

    Article  Google Scholar 

  37. Nogués-Paegle J, Byerle LA, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128:837–850

    Article  Google Scholar 

  38. OCHA (2015) The 2014/2015 Southern Africa flood season. Issue 18. May 2015. South Africa

  39. Pohl B, Richard Y, Fauchereau N (2007) Influence of the Madden–Julian oscillation on southern African summer rainfall. J Clim 20:4227–4242. https://doi.org/10.1175/JCLI4231.1

    Article  Google Scholar 

  40. Pohl B, Fauchereau N, Richard Y, Rouault M, Reason CJC (2009) Interactions between synoptic, intraseasonal and interannual convective variability over Southern Africa. Clim Dyn 33:1033–1050

    Article  Google Scholar 

  41. Pohl B, Dieppois B, Crétat J, Lawler D, Rouault M (2018) From synoptic to interdecadal variability in southern African rainfall: toward a unified view across time scales. J Clim 31:5845–5872

    Article  Google Scholar 

  42. Puaud Y, Pohl B, Fauchereau N, Macron C, Beltrando G (2017) Climate co-variability between South America and Southern Africa at interannual, intraseasonal and synoptic scales. Clim Dyn 48:4029–4050. https://doi.org/10.1007/s00382-016-3318-x

    Article  Google Scholar 

  43. Ramage CS (1971) Monsoon meteorology. Academic Press, New York

    Google Scholar 

  44. Reason CJC, Keibel A (2004) Tropical cyclone eline and its unusual penetration and impacts over the southern African Mainland. Weather Forecast 19:789–805

    Article  Google Scholar 

  45. Reason CJ, Landman W, Tennant W (2006) Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. Bull Am Meteorol Soc 87:941–956

    Article  Google Scholar 

  46. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  47. Schneider U, Ziese M, Meyer-Christoffer A, Finger P, Rustemeier E, Becker A (2016) The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. Proc Int Assoc Hydrol Sci 374:29–34

    Google Scholar 

  48. Serra YL, Jiang X, Tian B, Amador-Astua J, Maloney ED, Kiladis GN (2014) Tropical intraseasonal modes of the atmosphere. Annu Rev Environ Resour 39:189–215. https://doi.org/10.1146/annurev-environ-020413-134219

    Article  Google Scholar 

  49. Silvério KC (2020) Climate variability over Mozambique: impacts on rainfall, assessment of models and forecast. PhD Thesis at Federal University of Parana url: https://hdl.handle.net/1884/69193

  50. Silvério KC, Kulikova LA (2011) Evaluation of potential predictors for long-term forecast of precipitation in the area of Mozambique. Russ State Hydrometeorol Univ Proc Theor Res J 21:107–112. http://www.rshu.ru/university/notes/rggmuuchenyezapiski_21.pdf

  51. Taljaard JJ (1986) Change of rainfall distribution and circulation patterns over Southern Africa in summer. J Climatol 6:579–592. https://doi.org/10.1002/joc.3370060602

    Article  Google Scholar 

  52. Vitart F, Robertson AW (2018) The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. NPJ Clim Atmos Sci 1:3. https://doi.org/10.1038/s41612-018-0013-0

    Article  Google Scholar 

  53. Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Déqué M, Ferranti L, Fucile E, Fuentes M, Hendon H, Hodgson J, Kang HS, Kumar A, Lin H, Liu G, Liu X, Malguzzi P, Mallas I, Manoussakis M, Mastrangelo D, MacLachlan C, McLean P, Minami A, Mladek R, Nakazawa T, Najm S, Nie Y, Rixen M, Robertson AW, Ruti P, Sun C, Takaya Y, Tolstykh M, Venuti F, Waliser D, Woolnough S, Wu T, Won DJ, Xiao H, Zaripov R, Zhang L (2017) The subseasonal to seasonal (S2S) prediction project database. Bull Am Meteorol Soc 98:163–173

    Article  Google Scholar 

  54. Wang B, Ding Q (2008) Global monsoon: Dominant mode of annual variation in the tropics. Dyn Atmos Ocean 44:165–183. https://doi.org/10.1016/j.dynatmoce.2007.05.002

    Article  Google Scholar 

  55. Wang PX, Wang B, Cheng H, Fasullo J, Guo ZT, Kiefer T, Liu ZY (2014) The global monsoon across time scales: is there coherent variability of regional monsoons? Clim past 10:2163–2291. https://doi.org/10.5194/cpd-10-2163-2014

    Article  Google Scholar 

  56. Wang B, Biasutti M, Byrne MP, Castro C, Chang CP, Cook K, Fu R, Grimm AM, Ha KJ, Hendon H, Kitoh A, Krishnan R, Lee JY, Li J, Liu J, Moise A, Pascale S, Roxy MK, Seth A, Sui CH, Turner A, Yang S, Yun KS, Zhang L, Zhou T (2021) Monsoons climate change assessment. Bull Am Meteor Soc 102(1):E1–E19. https://doi.org/10.1175/BAMS-D-19-0335.1

    Article  Google Scholar 

  57. Washington R, Todd M (1999) Tropical-temperate links in southern African and Southwest Indian Ocean satellite-derived daily rainfall. Int J Climatol 19:1601–1616

    Article  Google Scholar 

  58. Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res Ocean 103:14451–14510

    Article  Google Scholar 

  59. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  60. Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J Clim 22:1482–1498

    Article  Google Scholar 

  61. Wiles P, Selvester K, Fidalgo L (2005) Learning Lessons from disaster recovery: the case of Mozambique. Washington DC, USA

  62. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press

    Google Scholar 

  63. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. https://doi.org/10.1175/1520-0477(1997)078%3c2539:GPAYMA%3e2.0.CO;2

    Article  Google Scholar 

  64. Yim S-Y, Wang B, Liu J, Wu Z (2014) A comparison of regional monsoon variability using monsoon indices. Clim Dyn 43:1423–1437. https://doi.org/10.1007/s00382-013-1956-9

    Article  Google Scholar 

  65. Zaitchik BF (2017) Madden–Julian oscillation impacts on tropical African precipitation. Atmos Res 184:88–102. https://doi.org/10.1016/j.atmosres.2016.10.002

    Article  Google Scholar 

  66. Zhang C (2005) The Madden–Julian oscillation. Rev Geophys 43:RG2003. https://doi.org/10.1029/2004RG000158

    Article  Google Scholar 

  67. Zhang C (2013) Madden–Julian oscillation: bridging weather and climate. Bull Am Meteorol Soc 94:1849–1870. https://doi.org/10.1175/BAMS-D-12-00026.1

    Article  Google Scholar 

  68. Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the partial financial support given by the Mozambique Ministry of Science and Technology, Higher and Technical Professional Education (MCTESTP) through the Higher Education Science and Technology (HEST) Project, financed by the World Bank Group, and Higher Polytechnic Institute of Songo (ISPS), which granted the leave for the Ph.D. studies. A. M. Grimm acknowledges the support from the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alice M. Grimm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silvério, K.C., Grimm, A.M. Southern African monsoon: intraseasonal variability and monsoon indices. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05954-y

Download citation

Keywords

  • Intraseasonal oscillations
  • Summer monsoon
  • Southern Africa
  • Teleconnections
  • Monsoon indices