Skip to main content

Relative contributions of urbanization and greenhouse gases concentration on future climate over Beijing–Tianjin–Hebei region in China

Abstract

In this study, the effects of land use/cover (LULC) change induced by urbanization and greenhouse gases (GHGs) concentration on future climate over the Beijing–Tianjin–Hebei region in China under Representative Concentration Pathways 4.5 (RCP4.5) scenario are investigated. The Weather Research and Forecasting model is used to downscale and predict the future climate state using the RCP4.5 simulations from the Community Earth System Model. Results show that large-scale general atmospheric circulation and GHGs are the two dominate factors for the future climate over the Beijing–Tianjin–Hebei region in the next 10–20 years under the RCP4.5 scenario. Urbanization over a small-scale region and scattered areas has a slight effect on the regional future climate. On the urban local scale, the LULC change in the urban area has a relatively obvious impact on the local climate of the city through altering the land–atmosphere interaction within the urban region accompanied with seasonal dependence. The annual mean surface air temperature (SAT) of urban area is projected to be 0.44 °C (2020), 0.87 °C (2030), and 1.48 °C (2040) higher than the climatology under different climate scenarios in the future resulting from integrated urbanization and GHGs forcing effects. The annual mean SAT of urban area changed by the GHGs forcing will increase by 0.35 °C (2020), 1.00 °C (2030), and 1.66 °C (2040), and the urbanization forcing will increase the annual mean SAT by 0.09 °C (2020), − 0.13 °C (2030), and − 0.18 °C (2040) in the urban area, respectively. The effects of urban expansion on the seasonal mean SAT are different during different the warm and cold periods of a year. The expanded urban area will increase the SAT during the warm period of a year (from March to September), and will decrease the SAT during the cold period of a year (from October to February of next year). The effects of scattered urbanization process and large-scale urban agglomeration on regional and local climate have strong spatial and temporal scale dependence. GHGs are the most important factor for dominating the future climate of this region. Meanwhile, due to the important impact of urbanization on the urban local scale, we strongly suggest that urbanization process should be considered in climate modeling system since it can provide a more realistic and reliable scenario of the future climate in the urban area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Argüeso D, Evans J, Fita L, Bormann K (2014) Temperature response to future urbanization and climate change. Clim Dyn 42:2183–2199. https://doi.org/10.1007/s00382-013-1789-6

    Article  Google Scholar 

  2. Bhati S, Mohan M (2018) WRF-urban canopy model evaluation for the assessment of heat island and thermal comfort over an urban airshed in India under varying land use/land cover conditions. Geosci Lett 5:1–19. https://doi.org/10.1186/s40562-018-0126-7

    Article  Google Scholar 

  3. Bruyère CL, Done JM, Holland GJ, Fredrick S (2014) Bias corrections of global models for regional climate simulations of high-impact weather. Clim Dyn 43:1847–1856. https://doi.org/10.1007/s00382-013-2011-6

    Article  Google Scholar 

  4. Chen L, Frauenfeld OW (2014a) Surface air temperature changes over the 20th and 21st centuries in China simulated by 20 CMIP5 models. J Climate 27:3920–3937. https://doi.org/10.1175/JCLI-D-13-00465.1

    Article  Google Scholar 

  5. Chen L, Frauenfeld OW (2014b) A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J Geophys Res Atmos 119:5767–5786. https://doi.org/10.1002/2013JD021190

    Article  Google Scholar 

  6. Chen L, Frauenfeld OW (2016) Impacts of urbanizaition on future climate in China. Clim Dyn 47:345–357. https://doi.org/10.1007/s00382-015-2840-6

    Article  Google Scholar 

  7. Chen SH, Sun WY (2002) A one-dimensional time dependent cloud model. J Meteorol Soc Jpn Ser II 80:99–118. https://doi.org/10.2151/jmsj.80.99

    Article  Google Scholar 

  8. Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan T, Manning KW, Martilli A, Miao S, Sailor D, Salamanca FP, Taha H, Tewari M, Wang X, Wyszogrodzki AA, Zhang C (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288. https://doi.org/10.1002/joc.2158

    Article  Google Scholar 

  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  10. Deng Q, Jin Y, Rao P (2015) The Beijing–Tianjin–Hebei Synergy Development Program Outline was approved. http://politics.people.com.cn/n/2015/0501/c1001-26935006.html

  11. Di Vittorio AV, Chini LP, Bond-Lamberty B, Mao J, Shi X, Truesdale J, Craig A, Calvin K, Jones A, Collins WD, Edmonds J, Hurtt GC, Thornton P, Thomson A (2014) From land use to land cover: restoring the afforestation signal in a coupled integrated assessment—earth system model and the implications for CMIP5 RCP simulations. Biogeosciences 11:6435–6450. https://doi.org/10.5194/bg-11-6435-2014

    Article  Google Scholar 

  12. Feng JM, Wang YL, Ma ZG, Liu YH (2012) Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J Clim 25:7187–7203. https://doi.org/10.1175/JCLI-D-11-00333.1

    Article  Google Scholar 

  13. Feng JM, Wang YL, Ma ZG (2013) Long-term simulation of largescale urbanization effect on the East Asian monsoon. Clim Change 129:511–523. https://doi.org/10.1007/s10584-013-0885-2

    Article  Google Scholar 

  14. Feng JM, Wang J, Yan ZW (2014) Impact of anthropogenic heat release on regional climate in three vast urban agglomerations in China. Adv Atmos Sci 31:363–373. https://doi.org/10.1007/s00376-013-3041-z

    Article  Google Scholar 

  15. Flanner MG (2009) Integrating anthropogenic heat flux with global climate models. Geophys Res Lett 36:L02801. https://doi.org/10.1029/2008GL036465

    Article  Google Scholar 

  16. Gao XJ, Shi Y, Giorgi F (2011) A high resolution simulation of climate change over China. Sci China Earth Sci 54:462–472. https://doi.org/10.1007/s11430-010-4035-7

    Article  Google Scholar 

  17. Gao XJ, Shi Y, Zhang D, Giorgi F (2012) Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin Sci Bull 57:1188–1195. https://doi.org/10.1007/s11434-011-4935-8

    Article  Google Scholar 

  18. Gao YH, Xu JW, Chen DL (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J Clim 28:2823–2841. https://doi.org/10.1175/JCLI-D-14-00300.1

    Article  Google Scholar 

  19. Gong P, Liang S, Carlton EJ, Jiang QW, Wu JY, Wang L, Remais JV (2012) Urbanisation and health in China. Lancet 379:843–852. https://doi.org/10.1016/S0140-6736(11)61878-3

    Article  Google Scholar 

  20. Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7:109. https://doi.org/10.1038/s41597-020-0453-3

    Article  Google Scholar 

  21. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  22. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos 113:D13103. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  23. Ichinose T, Shimodozono K, Hanaki K (1999) Impact of anthropogenic heat on urban climate in Tokyo. Atmos Environ 33:3897–3909. https://doi.org/10.1016/S1352-2310(99)00132-6

    Article  Google Scholar 

  24. IPCC (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge

    Google Scholar 

  25. IPCC (2013) Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K et al (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1256

    Google Scholar 

  26. Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918. https://doi.org/10.1175/MWR-D-11-00056.1

    Article  Google Scholar 

  27. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2

    Article  Google Scholar 

  28. Kaufmann RK, Seto KC, Schneider A, Liu ZT, Zhou LM, Wang WL (2007) Climate response to rapid urban growth: evidence of a human-induced precipitation deficit. J Clim 20:2299–2306. https://doi.org/10.1175/JCLI4109.1

    Article  Google Scholar 

  29. Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373. https://doi.org/10.1038/nclimate1716

    Article  Google Scholar 

  30. Kong DD, Gu XH, Li JF, Ren GY, Liu JY (2020) Contributions of global warming and urbanization to the intensification of human-perceived heatwaves over China. J Geophys Res Atmos 125:e2019JD032175. https://doi.org/10.1029/2019JD03217

    Article  Google Scholar 

  31. Kusaka H, Kimura F (2004) Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn Ser II 82:67–80. https://doi.org/10.2151/jmsj.82.67

    Article  Google Scholar 

  32. Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple singlelayer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound Layer Meteorol 101:329–358. https://doi.org/10.1023/A:1019207923078

    Article  Google Scholar 

  33. Lamichhane S, Shakya NM (2019a) Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley. Nepal J Hydrol Reg Stud 26:100635. https://doi.org/10.1016/j.ejrh.2019.100635

    Article  Google Scholar 

  34. Lamichhane S, Shakya NM (2019b) Integrated assessment of climate change and land use change impacts on hydrology in the Kathmandu Valley Watershed, Central Nepal. Water 11:1–17. https://doi.org/10.3390/w11102059

    Article  Google Scholar 

  35. Lamichhane S, Shakya NM (2020) Shallow aquifer groundwater dynamics due to land use/cover change in highly urbanized basin: the case of Kathmandu Valley. J Hydrol Reg Stud 30:100707. https://doi.org/10.1016/j.ejrh.2020.100707

    Article  Google Scholar 

  36. Liu S, Gao W, Liang XZ (2013) A regional climate model downscaling projection of China future climate change. Clim Dyn 41:1871–1884. https://doi.org/10.1007/s00382-012-1632-5

    Article  Google Scholar 

  37. Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. https://doi.org/10.1002/joc.3736

    Article  Google Scholar 

  38. Miao S, Chen F, LeMone MA, Tewari M, Li Q, Wang Y (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J Appl Meteorol Climatol 48:484–501. https://doi.org/10.1175/2008JAMC1909.1

    Article  Google Scholar 

  39. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102:16663–16682. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  40. Monaghan AJ, Steinhoff DF, Bruyere CL, Yates D (2014) NCAR CESM global bias-corrected CMIP5 output to support WRF/MPAS research. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder. https://doi.org/10.5065/D6DJ5CN4. Accessed 05 May 2019

  41. Oke TR (1982) The energetic basis of the urban heat Island. Q J R Meteorol Soc 108:1–24. https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  42. Sailor DJ, Lu L (2004) A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38:2737–2748. https://doi.org/10.1016/j.atmosenv.2004.01.034

    Article  Google Scholar 

  43. Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9:1–27. https://doi.org/10.1175/EI156.1

    Article  Google Scholar 

  44. Shimadera H, Kondo A, Shrestha KL, Kitaoka K, Inoue Y (2015) Numerical evaluation of the impact of urbanization on summertime precipitation in Osaka. Jpn Adv Meteorol. https://doi.org/10.1155/2015/379361

    Article  Google Scholar 

  45. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR. https://doi.org/10.5065/D68S4MVH

  46. Sun Y, Zhang XB, Ding YH, Chen DL, Qin DH, Zhai PM (2021) Understanding human influence on climate change in China. Natl Sci Rev. https://doi.org/10.1093/nsr/nwab113

    Article  Google Scholar 

  47. Tewari M, Chen F, Wang W, Dudhia J, LeMone M, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca R (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15. https://staff.ucar.edu/browse/people/7309/OSGC-000-000-008-560

  48. Wang J, Feng JM, Yan ZW, Hu YH, Jia GS (2012) Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J Geophys Res Atmos 117:D21103. https://doi.org/10.1029/2012JD018226

    Article  Google Scholar 

  49. Wang X, Liao J, Zhang J, Shen C, Chen W, Xia B, Wang T (2013) A numeric study of regional climate change induced by urban expansion in the pearl river delta, China. J Appl Meteorol Climatol 53:346–362. https://doi.org/10.1175/JAMC-D-13-054.1

    Article  Google Scholar 

  50. Wang X, Sun X, Tang J, Yang X (2015) Urbanization-induced regional warming in Yangtze river delta: potential role of anthropogenic heat release. Int J Climatol 35:4417–4430. https://doi.org/10.1002/joc.4296

    Article  Google Scholar 

  51. Wang J, Huang B, Fu DJ, Atkinson PM, Zhang XZ (2016) Response of urban heat island to future urban expansion over the Beijing–Tianjin–Hebei metropolitan area. Appl Geogr 70:26–36. https://doi.org/10.1016/j.apgeog.2016.02.010

    Article  Google Scholar 

  52. Yang B, Zhang YC, Qian Y (2012) Simulation of urban climate with high-resolution WRF model: a case study in Nanjing, China. Asia-Pac J Atmos Sci 48:227–241. https://doi.org/10.1007/s13143-012-0023-5

    Article  Google Scholar 

  53. Zhang N, Gao ZQ, Wang XM, Chen Y (2010) Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor Appl Climatol 102:331–342. https://doi.org/10.1007/s00704-010-0263-1

    Article  Google Scholar 

Download references

Acknowledgements

This research is jointly supported by the National Key R&D Program of China (Grant No. 2016YFA0602703), the National Natural Science Foundation of China (Grants No. 42005114 and No. 41775015), the Project funded by China Postdoctoral Science Foundation (Grant No. 2019M663206), the Fundamental Research Funds for the Central Universities from Sun Yat-Sen University (Grant No. 20lgpy28) and the Project Supported by State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2017-KF-14). The Climatic Research Unit gridded Time Series (CRU TS) dataset version 4 produced by the UK’s National Centre for Atmospheric Science (NCAS) at the University of East Anglia’s Climatic Research Unit (CRU) can be obtain from https://crudata.uea.ac.uk/cru/data/hrg/. The NCAR CESM Global Bias-Corrected CMIP5 Output to Support WRF/MPAS Research dataset can be obtain from the Computational and Information Systems Laboratory (CISL) Research Data Archive at NCAR https://rda.ucar.edu/datasets/ds316.1/. We are very grateful to the editor and anonymous reviewers for their careful review and valuable comments, which led to substantial improvement of this work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Dong or Dongdong Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5012 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Dong, W., Yan, D. et al. Relative contributions of urbanization and greenhouse gases concentration on future climate over Beijing–Tianjin–Hebei region in China. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05952-0

Download citation

Keywords

  • Urbanization
  • Land use/cover change
  • Greenhouse gases concentration
  • Future climate
  • Beijing–Tianjin–Hebei region