Skip to main content

Tropical oceanic intraseasonal variabilities associated with central Indian Ocean mode

Abstract

The oceanic intraseasonal variabilities (ISVs) are pronounced over the tropical Indian Ocean. Recently, a Central Indian Ocean (CIO) mode was proposed as an ocean–atmosphere coupled mode at intraseasonal timescales. It has a close relation with northward-propagating ISVs and intraseasonal precipitation during the Indian summer monsoon. In this study, the dynamics of tropical oceanic ISVs associated with the CIO mode are analyzed using reanalysis products and observations. A complete heat budget analysis shows that intraseasonal SST anomalies which propagate westward from the eastern to the central tropical Indian Ocean during the CIO mode are mainly attributable to zonal thermal advection. Surface heat flux is the second largest contributor. This is distinct from the traditional tropical oceanic ISVs as a response to the Madden–Julian Oscillation (MJO) in the atmosphere, in which surface heat flux is usually the dominant component. Current results along with the previously reported atmosphere dynamics during the CIO mode depict a framework for the ocean–atmosphere coupled mode over the tropical Indian Ocean. This represents a more comprehensive understanding of tropical ISVs and will ultimately contribute to the improvement in process understanding, simulations, and forecasts of the Indian summer monsoon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Annamalai H, Sperber KR (2005) Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J Atmos Sci 62:2726–2748

    Google Scholar 

  • Argo (2000) Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE

  • Bender CM, Orszag SA (2013) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer Science & Business Media, Berlin

    Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. j Clim 12:1990–2009

    Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Wea Rev 136:2999–3017

    Google Scholar 

  • Chelton DB, Schlax MG (1996) Global observations of oceanic Rossby waves. Science 272:234–238

    Google Scholar 

  • Chelton DB, DeSzoeke RA, Schlax MG, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460

    Google Scholar 

  • Cheng X, McCreary JP, Qiu B, Qi Y, Du Y (2017) Intraseasonal-to-semiannual variability of sea-surface height in the astern, equatorial Indian Ocean and southern Bay of Bengal. J Geophys Res Oceans 122:4051–4067. https://doi.org/10.1002/2016JC012662

    Article  Google Scholar 

  • Cushman-Roisin B, Beckers J-M (2011) Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic Press, Cambridge

    Google Scholar 

  • de Szoeke SP, Edson JB, Marion JR, Fairall CW, Bariteau L (2015) The MJO and air-sea interaction in TOGA COARE and DYNAMO. J Clim 28:597–622

    Google Scholar 

  • Drushka K, Sprintall J, Gille ST (2014) Subseasonal variations in salinity and barrier-layer thickness in the eastern equatorial Indian Ocean. J Geophys Res Oceans 119:805–823

    Google Scholar 

  • Farrar JT, Durland TS (2012) Wavenumber–frequency spectra of inertia–gravity and mixed Rossby–gravity waves in the equatorial Pacific Ocean. J Phys Oceanogr 42:1859–1881

    Google Scholar 

  • Gill AE (2016) Atmosphere—ocean dynamics. Elsevier, Amsterdam

    Google Scholar 

  • Gnanaseelan C, Vaid BH (2010) Interannual variability in the Biannual Rossby waves in the tropical Indian Ocean and its relation to Indian Ocean Dipole and El Nino forcing. Ocean Dyn 60:27–40

    Google Scholar 

  • Gnanaseelan C, Vaid BH, Polito PS (2008) Impact of biannual rossby waves on the Indian Ocean Dipole. IEEE Geosci Remote Sens Lett 5:427–429

    Google Scholar 

  • Goswami BN (2005) South Asian monsoon. Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, pp 19–61

    Google Scholar 

  • Gregg MC, Sanford TB, Winkel DP (2003) Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422:513–515

    Google Scholar 

  • Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air-sea interaction. J Clim 16:1775–1790

    Google Scholar 

  • Hendon HH, Glick J (1997) Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J Clim 10:647–661

    Google Scholar 

  • Holte J, Talley LD, Gilson J, Roemmich D (2017) An Argo mixed layer climatology and database. Geophys Res Lett 44:5618–5626

    Google Scholar 

  • Hurley JV, Boos WR (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon*. J Clim 26:2279–2287

    Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Google Scholar 

  • Jiang X et al (2015) Vertical structure and physical processes of the Madden-Julian oscillation: exploring key model physics in climate simulations. J Geophys Res Atmos 120:4718–4748

    Google Scholar 

  • Jin D, Waliser DE, Jones C, Murtugudde R (2012) Modulation of tropical ocean surface chlorophyll by the Madden–Julian Oscillation. Clim Dyn 40:39–58

    Google Scholar 

  • Jin D, Murtugudde RG, Waliser DE (2013) Intraseasonal atmospheric forcing effects on the mean state of ocean surface chlorophyll. J Geophys Res Oceans 118:184–196

    Google Scholar 

  • Kang I-S, Kim D, Kug J-S (2010) Mechanism for northward propagation of boreal summer intraseasonal oscillation: convective momentum transport. Geophys Res Lett 37:L24804. https://doi.org/10.1029/2010GL045072

    Article  Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105:16803–16821

    Google Scholar 

  • Kiladis GN, Straub KH, Haertel PT (2005) Zonal and vertical structure of the Madden-Julian oscillation. J Atmos Sci 62:2790–2809

    Google Scholar 

  • Kumar BP, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38:1521–1543

    Google Scholar 

  • Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36:1553–1576

    Google Scholar 

  • Li X, Tang Y, Zhou L, Chen D, Yao Z, Islam SU (2016) Assessment of Madden–Julian oscillation simulations with various configurations of CESM. Clim Dyn 47:2667–2690

    Google Scholar 

  • Li B, Zhou L, Wang C, Gao C, Qin J, Meng Z (2020) Modulation of tropical cyclone genesis in the Bay of Bengal by the Central Indian Ocean Mode. J Geophys Res Atmos 125:e2020JD032641

    Google Scholar 

  • Masumoto Y, Hase H, Kuroda Y, Matsuura H, Takeuchi K (2005) Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys Res Lett 32:L02607. https://doi.org/10.1029/2004GL021896

    Article  Google Scholar 

  • McPhaden MJ et al (2009) RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction*. Bull Am Meteorol Soc 90:459–480

    Google Scholar 

  • Menemenlis D et al (2005) NASA supercomputer improves prospects for ocean climate research. EOS Trans Am Geophys Union 86:89–96

    Google Scholar 

  • Monterey GI, Levitus S (1997) Seasonal variability of mixed layer depth for the world ocean. US Department of Commerce, National Oceanic and Atmosphereric Administration, National Environmental Satellite, Data, and Information Service

  • Murtugudde R, Busalacchi AJ (1999) Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J Clim 12:2300–2326

    Google Scholar 

  • Murtugudde R (2021) Indian Summer Monsoon System: a holistic approach for advancing monsoon understanding in a warming world. Hydrological Aspects of Climate Change, p 77

  • Nagura M, McPhaden MJ (2010) Wyrtki jet dynamics: seasonal variability. J Geophys Res 115:C07009. https://doi.org/10.1029/2009JC005922

    Article  Google Scholar 

  • Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89

    Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Google Scholar 

  • Pedlosky J (1987) Geophysical fluid dynamics, vol 710. Springer, Berlin

    Google Scholar 

  • Pujiana K, McPhaden MJ (2018) Ocean surface layer response to convectively coupled Kelvin waves in the eastern equatorial Indian Ocean. J Geophys Res Oceans 123:5727–5741

    Google Scholar 

  • Pujiana K, Moum JN, Smyth WD (2018) The role of turbulence in redistributing upper-ocean heat, freshwater, and momentum in response to the MJO in the Equatorial Indian Ocean. J Phys Oceanogr 48:197–220

    Google Scholar 

  • Qin J, Zhou L, Li B, Murtugudde R (2020) Simulation of Central Indian Ocean Mode in S2S models. J Geophys Res Atmos 125:e2020JD033550

    Google Scholar 

  • Qiu B, Miao W, Müller P (1997) Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J Phys Oceanogr 27:2405–2417

    Google Scholar 

  • Qu T (2003) Mixed layer heat balance in the western North Pacific. J Geophys Res 108:3242. https://doi.org/10.1029/2002JC001536

    Article  Google Scholar 

  • Qu T, Meyers G (2005) Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. J Geophys Res 110:C11003. https://doi.org/10.1029/2004JC002816

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Google Scholar 

  • Rydbeck AV, Jensen TG, Smith TA, Flatau MK, Janiga MA, Reynolds CA, Ridout JA (2019) Ocean heat content and the intraseasonal oscillation. Geophys Res Lett 46:14558–14566

    Google Scholar 

  • Schott FA, Xie S-P, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002

    Google Scholar 

  • Seiki A, Katsumata M, Horii T, Hasegawa T, Richards KJ, Yoneyama K, Shirooka R (2013) Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011. J Geophys Res Oceans 118:5523–5535

    Google Scholar 

  • Shinoda T, Hendon HH, Glick J (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J Clim 11:1685–1702

    Google Scholar 

  • Shinoda T, Kiladis GN, Roundy PE (2009) Statistical representation of equatorial waves and tropical instability waves in the Pacific Ocean. Atmos Res 94:37–44. https://doi.org/10.1016/j.atmosres.2008.06.002

    Article  Google Scholar 

  • Stevenson JW, Niiler PP (1983) Upper ocean heat budget during the Hawaii-to-Tahiti Shuttle experiment. J Phys Oceanogr 13:1894–1907

    Google Scholar 

  • Vecchi GA, Harrison DE (2002) Monsoon Breaks and Subseasonal Sea Surface Temperature Variability in the Bay of Bengal*. J Clim 15:1485–1493

    Google Scholar 

  • Wakata Y (2007) Frequency-wavenumber spectra of equatorial waves detected from satellite altimeter data. J Oceanogr 63:483–490. https://doi.org/10.1007/s10872-007-0043-4

    Article  Google Scholar 

  • Waliser DE (2006) Intraseasonal variability. The Asian Monsoon. Springer, Berlin, pp 203–257

    Google Scholar 

  • Waliser DE, Murtugudde R, Lucas LE (2003) Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1. Austral summer and the Madden-Julian Oscillation. J Geophys Res 108:3160. https://doi.org/10.1029/2002JC001620

    Article  Google Scholar 

  • Waliser DE, Murtugudde R, Lucas LE (2004) Indo-Pacific Ocean response to atmospheric intraseasonal variability: 2. Boreal summer and the Intraseasonal Oscillation. J Geophys Res 109:C03030. https://doi.org/10.1029/2003JC002002

    Article  Google Scholar 

  • Wallace JM, Adames ÁF (2014) Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J Atmos Sci 71:2007–2026

    Google Scholar 

  • Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res Lett 32:L15711. https://doi.org/10.1029/2005GL022734

    Article  Google Scholar 

  • Wang B, Xiang B, Li J, Webster PJ, Rajeevan MN, Liu J, Ha KJ (2015) Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat Commun 6:7154

    Google Scholar 

  • Weller RA, Yu L (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527–540

    Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Google Scholar 

  • Wyrtki K (1973) An equatorial jet in the Indian ocean. Science 181:262–264

    Google Scholar 

  • Xi J, Zhou L, Murtugudde R, Jiang L (2015) Impacts of intraseasonal SST anomalies on precipitation during Indian summer monsoon. J Clim 28:4561–4575

    Google Scholar 

  • Zhang M, Zhou L, Fu H, Jiang L, Zhang X (2016) Assessment of intraseasonal variabilities in China Ocean Reanalysis (CORA). Acta Oceanol Sin 35:90–101

    Google Scholar 

  • Zhang H-M, Bates JJ, Reynolds RW (2006) Assessment of composite global sampling: sea surface wind speed. Geophys Res Lett 33:L17714. https://doi.org/10.1029/2006GL027086

    Article  Google Scholar 

  • Zhou L, Murtugudde R (2014) Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J Clim 27:126–139

    Google Scholar 

  • Zhou L, Murtugudde R, Chen D, Tang Y (2017a) Seasonal and interannual variabilities of the central Indian Ocean mode. J Clim 30:6505–6520

    Google Scholar 

  • Zhou L, Murtugudde R, Chen D, Tang Y (2017b) A Central Indian Ocean mode and heavy precipitation during the Indian summer monsoon. J Clim 30:2055–2067

    Google Scholar 

  • Zhou L, Murtugudde R, Neale RB, Jochum M (2018) Simulation of the Central Indian Ocean mode in CESM: implications for the Indian summer monsoon system. J Geophys Res Atmos 123:58–72

    Google Scholar 

  • Zhou L, Sobel AH, Murtugudde R (2012) Kinetic energy budget for the Madden–Julian oscillation in a multiscale framework. J Clim 25:5386–5403

    Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Natural Science Foundation of China (42076001, 41690121, and 41690120), the China Ocean Mineral Resources Research and Development Association Program (DY135-E2-3-01, DY135-E2-3-05), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai; 311020004), and the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2020PT205). We acknowledge NOAA and its partners for maintaining the RAMA moored buoy array. RM gratefully acknowledges the Visiting Faculty position at the Indian Institute of Technology, Bombay. KP was supported by a National Research Council research associateship award at NOAA/PMEL. This is PMEL contribution 5044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The thermodynamic equation for the ocean can be written as

$$\frac{\partial T}{{\partial t}} = - \vec{U}_{{\text{H}}} \cdot \nabla_{{\text{H}}} T - w\frac{\partial T}{{\partial z}} + \frac{1}{{\rho C_{p} }}\frac{\partial Q}{{\partial z}} + R,$$
(6)

where T is the temperature; \({\overrightarrow{U}}_{H}=u\overrightarrow{i}+v\overrightarrow{j}\) is the horizontal velocity vector, \(\overrightarrow{i}\) and \(\overrightarrow{j}\) are the unit vectors in the eastward and northward directions, respectively; \({\nabla }_{\mathrm{H}}=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}\); w is the vertical velocity; Q is diabatic heating, Cp is the heat capacity, and ρ is the seawater density; R denotes the residuals which also includes the unresolved eddy diffusivity. Define the vertical mean in the upper mixed layer, \(\langle \rangle =\frac{1}{h}{\int }_{-h}^{0}dz\), where h is the MLD. And \(\langle \frac{1}{\rho {C}_{p}}\frac{\partial Q}{\partial z}\rangle \approx \frac{Q}{\rho {C}_{p}h}\), where \(Q\) denotes the net surface heat flux retained in the upper mixed layer. Therefore,

$$\left\langle {\frac{\partial T}{{\partial t}}} \right\rangle = - \left\langle {\vec{U}_{{\text{H}}} \cdot \nabla_{{\text{H}}} T} \right\rangle - \left\langle {w\frac{\partial T}{{\partial z}}} \right\rangle + \frac{Q}{{\rho C_{p} h}} + \left\langle R \right\rangle .$$
(7)

Considering the MLD variation with time and positions and following the Leibniz's rule for the partial derivative of integral with variable limits, one has

$$\frac{\partial \left\langle T \right\rangle }{{\partial t}} = \left\langle {\frac{\partial T}{{\partial t}}} \right\rangle + \frac{1}{h}\frac{\partial h}{{\partial t}}\left( {T|_{z = - h} - \left\langle T \right\rangle } \right).$$
(8)

Substituting Eq. (7) into Eq. (8), one has

$$\frac{\partial \left\langle T \right\rangle }{{\partial t}} = - \left\langle {\vec{U}_{{\text{H}}} \cdot \nabla_{{\text{H}}} T} \right\rangle - \left\langle {w\frac{\partial T}{{\partial z}}} \right\rangle + \frac{1}{h}\frac{\partial h}{{\partial t}}\left( {T|_{z = - h} - \left\langle T \right\rangle } \right) + \frac{Q}{{\rho C_{p} h}} + \left\langle R \right\rangle .$$
(9)

which is Eq. (1) in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Zhou, L., Murtugudde, R. et al. Tropical oceanic intraseasonal variabilities associated with central Indian Ocean mode. Clim Dyn 58, 1107–1126 (2022). https://doi.org/10.1007/s00382-021-05951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05951-1

Keywords

  • Oceanic intraseasonal variability
  • Tropical Indian Ocean
  • Mixed layer heat budget
  • Ocean circulation