Abstract
Tropical Pacific (TP) air–sea coupling is generally accompanied by significant zonal sea surface temperature anomalies (SSTAs) gradient. Here, the wintertime zonal SSTA gradient structures were highlighted in the zonal mean departure SSTA (ZMD-SSTA) field, and separated into two orthogonal dominant components by empirical orthogonal function (EOF) analysis: the west–east dipole (EOF1, 70.7%) and the zonal tripole (EOF2, 23.0%) structure. EOF result comparisons, singular value decomposition (SVD), correlation and composite analyses shows that both the two gradient structures are highly coupled with Walker circulation (WC) but in obviously different spatiotemporal features, and together constitute the vast majority of the coupling variability. Further, the dipole structure can be largely reflected by the indices for eastern-type El Niño-Southern Oscillation (ENSO), but the central-type ENSO indices appears as a superposition of both dipole and tripole structures signals. In rare events of “uncoupled El Niño warming”, the two gradient structures can further describe the weaker zonal SSTA gradient under the significant local SSTA in eastern Pacific. These implies that the dipole and tripole structures here may be beneficial to independently reflect the two distinct sea-air coupling structures and supplement the gradient information during ENSO. In addition, the dipole zonal SSTA gradient structure and air-sea feedback associated with it decay rapidly and disappear before the following summer, while the tripole one shows a longer persistence lasting until autumn. The lead–lag relationship with Niño3.4 index indicated that the wintertime tripole SSTA gradient structures precedes the development of ENSO by 1-year.












Similar content being viewed by others
References
Ashok K, Behera SK, Rao SA et al (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798
Ashok K, Tam CY, Lee WJ (2009) ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys Res Lett 36:L12705. https://doi.org/10.1029/2009GL038847
Bamston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the Equatorial Pacific[J]. Atmos Ocean 35(3):367–383. https://doi.org/10.1080/07055900.1997.9649597
Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829. https://doi.org/10.3402/tellusa.v18i4.9712
Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172. https://doi.org/10.1175/1520-0493(1969)0972.3.CO;2
Capotondi A, Wittenberg AT, Newman M et al (2015) Understanding ENSO diversity. Bull Amer Meteor Soc 96:921–938. https://doi.org/10.1175/BAMS-D-13-00117.1
Chen L, Gu W, Li W (2019) Why is the East Asian summer monsoon extremely strong in 2018?—collaborative effects of SST and snow cover anomalies. J Meteorol Res 33(4):593–608. https://doi.org/10.1007/s13351-019-8200-4
Cheng J, Gao C, Hu S et al (2018) High-stability algorithm for the three-pattern decomposition of global atmospheric circulation. Theor Appl Climatol 133:851–866. https://doi.org/10.1007/s00704-017-2226-2
Cheng J, Hu S, Gao C et al (2020) On the discrepancies in the changes in the annual mean Hadley circulation among different regions and between CMIP5 models and reanalyses. Theor Appl Climatol 141:1475–1491. https://doi.org/10.1007/s00704-020-03292-3
Chiang JCH, Lintner BR (2005) Mechanisms of remote tropical surface warming during El Niño. J Climate 18(20):4130–4149. https://doi.org/10.1175/JCLI3529.1
Clarke AJ (2014) El Niño physics and El Niño predictability. Ann Rev Mar Sci 6:79–99. https://doi.org/10.1146/annurev-marine-010213-135026
Ding R, Li J, Tseng Y et al (2016) Interdecadal change in the lagged relationship between the Pacific-South American pattern and ENSO. Clim Dyn 47:2867–2884. https://doi.org/10.1007/s00382-016-3002-1
Ding R, Li J, Tseng Y et al (2017a) Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J Geophys Res Atmos 122:279–298. https://doi.org/10.1002/2016JD025502
Ding R, Li J, Tseng Y et al (2017b) Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Clim Dyn 49:1321–1339. https://doi.org/10.1007/s00382-016-3389-8
Fan Y, Allen MR, Anderson DLT et al (2000) How predictability depends on the nature of uncertainty in initial conditions in a coupled model of ENSO. J Clim 13:3298–3313. https://doi.org/10.1175/1520-0442(2000)0132.0.CO;2
Feng J, Wang L, Chen W et al (2010) Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J Geophys Res 115:D24122. https://doi.org/10.1029/2010JD014761
Feng J, Chen W, Tam CY et al (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31:2091–2101. https://doi.org/10.1002/joc.2217
Feng J, Li J, Zhu JL, Liao H (2016a) Influences of El Niño Modoki event 1994/1995 on aerosol concentrations over southern China. J Geophys Res: Atmos 121(4):1637–1651. https://doi.org/10.1002/2015JD023659
Feng J, Li J, Zheng F, Xie F, Sun C (2016b) Contrasting impacts of developing phases of two types of El Niño on southern China rainfall. J Meteorol Soc Japan Ser II. https://doi.org/10.2151/jmsj.2016-019
Feng J, Chen W, Li Y (2017) Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Clim Dyn 48:2135–2151. https://doi.org/10.1007/s00382-016-3196-2
Feng J, Li J, Jin F et al (2018) A comparison of the response of the Hadley circulation to different tropical SST meridional structures during the equinox seasons. J Geophys Res Atmos 123:2591–2604. https://doi.org/10.1002/2017JD028219
Feng J, Li J, Jin FF et al (2019) Effect of El Niño on the response ratio of Hadley circulation to different SST meridional structures. Clim Dyn 53:3877–3891. https://doi.org/10.1007/s00382-019-04756-7
Gu W, Wang L, Li W et al (2015) Influence of the tropical Pacific east-west thermal contrast on the autumn precipitation in South China. Int J Climatol 35:1543–1555. https://doi.org/10.1002/joc.4075
Guo Y, Tan Z (2018a) Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño. Nat Commun 9:1507. https://doi.org/10.1038/s41467-018-03945-y
Guo Y, Tan Z (2018b) The Hadley circulation regime change: combined effect of the western Pacific warming and increased ENSO amplitude. J Clim 31:9739–9751. https://doi.org/10.1175/JCLI-D-18-0306.1
Guo Y, Tan Z (2018c) On the sensitivity of the relationship between Hadley circulation asymmetry and ENSO in CMIP5 models. Geophys Res Lett 45:9253–9259. https://doi.org/10.1029/2018GL079515
Guo Y, Tan Z (2018d) Relationship between El Niño-Southern Oscillation and the symmetry of the Hadley circulation: role of the sea surface temperature annual cycle. J Clim 31:5319–5332. https://doi.org/10.1175/JCLI-D-17-0788.1
He C, Zhou T, Li T (2019) Weakened anomalous western North Pacific anticyclone during an El Niño–Decaying summer under a warmer climate: dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J Clim 32:213–230. https://doi.org/10.1175/JCLI-D-18-0033.1
Hoell A, Funk C (2013) The ENSO-related west Pacific sea surface temperature gradient. J Clim 26:9545–9562. https://doi.org/10.1175/JCLI-D-12-00344.1
Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109(4):813–829. https://doi.org/10.1175/1520-0493(1982)1102.0.CO;2
Hu S, Cheng J, Chou J (2017a) Novel three-pattern decomposition of global atmospheric circulation: generalization of traditional two-dimensional decomposition. Clim Dyn 49:3573–3586. https://doi.org/10.1007/s00382-017-3530-3
Hu ZZ, Huang B, Tseng YH, Wang W, Kumar A, Zhu J, Jha B (2017b) Does vertical temperature gradient of the atmosphere matter for ENSO development? Clim Dyn 48(5–6):1413–1429. https://doi.org/10.1007/s00382-016-3149-9
Hu S, Chou J, Cheng J (2018a) Three-pattern decomposition of global atmospheric circulation: part I-decomposition model and theorems. Clim Dyn 50:2355–2368. https://doi.org/10.1007/s00382-015-2818-4
Hu S, Cheng J, Xu M et al (2018b) Three-pattern decomposition of global atmospheric circulation: part II-dynamical equations of horizontal, meridional and zonal circulations. Clim Dyn 50:2673–2686. https://doi.org/10.1007/s00382-017-3763-1
Hu ZZ, McPhaden MJ, Kumar A, Yu JY, Johnson NC (2020) Uncoupled El Niño warming. Geophys Res Lett. https://doi.org/10.1029/2020GL087621
Huang B, Thorne PW, Banzon VF et al (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30:8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1
Johnson NC et al (2019) On the delayed coupling between ocean and atmosphere in recent weak El Niño episodes. Geophys Res Lett 46(20):11416–11425. https://doi.org/10.1029/2019GL084021
Kalnay E, Kanamitsu M, Kistler R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–472. https://doi.org/10.1175/1520-0477(1996)077%3c0437:TNYRP%3e2.0.CO;2
Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632. https://doi.org/10.1175/2008JCLI2309.1
Karori MA, Li J, Jin FF (2013) The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over southeast China. J Clim 26(13):4567–4582. https://doi.org/10.1175/JCLI-D-12-00324.1
Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. https://doi.org/10.1175/2008JCLI2624.1
Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. https://doi.org/10.1024/2005GL022738
Larson SM, Kirtman BP (2015) An alternate approach to ensemble ENSO forecast spread: application to the 2014 forecast. Geophys Res Lett 42:9411–9415. https://doi.org/10.1002/2015GL066173
Latif M, Graham NE (1992) How much predictive skill is contained in the thermal structure of an OGCM? J Phys Oceanogr 22:951–962. https://doi.org/10.1175/1520-0485(1992)0222.0.CO;2
Latif M, Anderson D, Barnett T et al (1998) A review of the predictability and prediction of ENSO. J Geophys Res Oceans 103:14375–14393. https://doi.org/10.1029/97JC03413
Levine AFZ, McPhaden MJ (2015) The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys Res Lett 42:5034–5041. https://doi.org/10.1002/2015GL064309
Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436. https://doi.org/10.1175/1520-0469(1987)0442.0.CO;2
Liu H, Hu S, Xu M et al (2008a) Three-dimensional decomposition method of global atmospheric circulation. Sci China Ser D 51:386–402. https://doi.org/10.1007/s11430-008-0020-9
Liu J, Wang B, Cane MA et al (2008b) Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493:656–659. https://doi.org/10.1038/nature11784
McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745. https://doi.org/10.1126/science.1132588
Merlis TM, Schneider T (2011) Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J Climate 24:4757–4768. https://doi.org/10.1175/2011JCLI4042.1
Neelin JD, Jin FF, Syu HH (2000) Variations in ENSO phase locking. J Climate 13(14):2570–2590. https://doi.org/10.1175/15200442(2000)013%3c2570:VIEPL%3e2.0.CO;2
Peng P, Kumar A, Hu ZZ (2017) What drove the Pacific and North America climate anomalies in winter 2014/15? Clim Dyn 51(7–8):2667–2679. https://doi.org/10.1007/s00382-017-4035-9
Philander SG (1990) (1990) El Nino, La Nina, and the Southern oscillation. J Science 248(4957):904–905. https://doi.org/10.1126/science.248.4957.904
Puy M, Vialard J, Lengaigne M et al (2019) Influence of westerly wind events stochasticity on El Niño amplitude: the case of 2014 vs. 2015. Clim Dyn 52:7435–7454. https://doi.org/10.1007/s00382-017-3938-9
Ren H, Jin F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. https://doi.org/10.1029/2010GL046031
Ren H, Jin F (2013) Recharge oscillator mechanisms in two types of ENSO. J Clim 26:6506–6523. https://doi.org/10.1175/JCLI-D-12-00601.1
Saha K (1970) Zonal anomaly of sea surface temperature in equatorial Indian ocean and its possible effect upon monsoon circulation. Tellus 22:403–409. https://doi.org/10.3402/tellusa.v22i4.10234
Schwendike J, Govekar P, Reeder MJ et al (2014) Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J Geophys Res Atmos 119:1322–1339. https://doi.org/10.1002/2013JD020742
Seiki A, Takayabu YN (2007a) Westerly wind bursts and their relationship with intraseasonal variations and ENSO Part I: statistics. Mon Weather Rev 135:3325–3345. https://doi.org/10.1175/MWR3477.1
Seiki A, Takayabu YN (2007b) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: energetics over the western and central Pacific. Mon Weather Rev 135:3346–3361. https://doi.org/10.1175/MWR3503.1
Timmermann A, An SI, Kug JS et al (2018) El Niño–southern oscillation complexity. Nature 559:535–545. https://doi.org/10.1038/s41586-018-0252-6
Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño/Southern Oscillation. Quart J Roy Meteor Soc 124:1985–2004. https://doi.org/10.1002/qj.49712455010
Trenberth KE (1997) The definition of El Niño. Bull Amer Meteor Soc 78(12):2771–3277. https://doi.org/10.1175/1520-0477(1997)0782.0.CO;2
Trenberth KE, Stepaniak DP (2001) Indices of el Niño evolution. J Clim 14:1697–1701. https://doi.org/10.1175/1520-0442(2001)014%3c1697:LIOENO%3e2.0.CO;2
Van Oldenborgh GJ, Balmaseda MA, Ferranti L et al (2005) Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J Clim 18:3240–3249. https://doi.org/10.1175/JCLI3420.1
Vecchi GA, Harrison DE (2000) Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim 13:1814–1830. https://doi.org/10.1175/1520-0442(2000)013%3c1814:TPSSTA%3e2.0.CO;2
Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5:561–576. https://doi.org/10.1175/1520-0442(1992)005%3c0561:SVDOWS%3e2.0.CO;2
Wang C (2001) A unified oscillator model for the El Niño-Southern Oscillation. J Clim 14:98–115. https://doi.org/10.1175/1520-0442(2001)014%3c0098:AUOMFT%3e2.0.CO;2
Wang P, Liu D, Pan D (1987) Wave boundary between middle-and-low and middle-and-high latitude circulations, and seasonal transformation of northern-hemisphere mean circulation. Adv Atmos Sci 4:55–65. https://doi.org/10.1007/BF02656661
Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Climate 13(9):1517–1536. https://doi.org/10.1175/1520-0442(2000)013%3c1517:PEATHD%3e2.0.CO;2
Wang B, Liu J, Kim HJ et al (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. P Natl Acad Sci USA 110:5347–5352. https://doi.org/10.1073/pnas.1219405110
Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteorol Atmos Phys 56:33–55. https://doi.org/10.1007/BF01022520
Wu M, Zhou T, Chen X et al (2020) Intermodel uncertainty in the projection of the anomalous western north Pacific anticyclone associated with El Niño under global warming. Geophys Res Lett. https://doi.org/10.1029/2019GL086139
Xie SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J Clim 22:730–747. https://doi.org/10.1175/2008JCLI2544.1
Xie SP, Kosaka Y, Du Y et al (2016) Indo-western pacific ocean capacitor and coherent climate anomalies in Post-ENSO summer: a review. J Adv Atmos Sci 33:411–432. https://doi.org/10.1007/s00376-015-5192-6
Xue Y, Cane MA, Zebiak SE et al (1994) On the prediction of ENSO: a study with a low-order Markov model. Tellus A 46:512–528. https://doi.org/10.3402/tellusa.v46i4.15641
Yang X, Jia L, Kapnick SB et al (2018) On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter. Clim Dyn 51:3765–3783. https://doi.org/10.1007/s00382-018-4109-3
Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Climate 25(21):7702–7722. https://doi.org/10.1175/JCLI-D-11-00576.1
Zhang L, Li T (2017) Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Clim Dyn 48:987–997. https://doi.org/10.1007/s00382-016-3123-6
Zhang WJ, Jin FF, Ren HL, Li J, Zhao JX (2012) Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J Meteorol Soc Japan Ser II 90(4):535–552. https://doi.org/10.2151/jmsj.2012-407
Zhang L, Wu P, Zhou T et al (2018) ENSO transition from La Niña to El Niño drives prolonged spring–summer drought over North China. J Clim 31:3509–3523. https://doi.org/10.1175/JCLI-D-17-0440.1
Zhang P, Wang B, Wu Z (2019) Weak El Niño and winter climate in the mid-to high latitudes of Eurasia. J Clim 32:405–421. https://doi.org/10.1175/JCLI-D-17-0583.1
Zhao Y, Feng G, Zheng Z et al (2020) Evolution of tropical interannual sea surface temperature variability and its connection with boreal summer atmospheric circulations. Int J Clim 40(11):2702–2716. https://doi.org/10.1002/joc.6361
Zhu J, Kumar A, Huang B et al (2016) The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep 6:19677. https://doi.org/10.1038/srep19677
Acknowledgements
This work was supported by the National Key Research and Development Progam of China (2017YFC1502303), the National Natural Science Foundation of China (41875101, 41975088, 42005012, 41805060).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, Y., Zheng, Z., Zhi, R. et al. The zonal gradient structures of wintertime SST anomalies in the equatorial Pacific and their connection to the Walker circulation. Clim Dyn 58, 841–859 (2022). https://doi.org/10.1007/s00382-021-05939-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-021-05939-x


