Skip to main content

Spatial heterogeneity of aerosol induced rapid adjustments on precipitation response over India: a general circulation model study with ECHAM6-HAM2

Abstract

Anthropogenic aerosol induced declining trends in Indian region precipitation are now acknowledged, however, the role of rapid adjustments to aerosol forcing needs further understanding. An atmospheric general circulation model with dynamic aerosol fields, ECHAM6-HAM2, is used to investigate changes in stratiform and convective precipitation through simulations using different levels of aerosol emissions over India. The spatial pattern of precipitation change, with increased aerosol levels, increases over the Northern Indian region, decreasing over peninsular south India. This is driven by the spatial heterogeneity of stratiform precipitation changes, while simultaneous convective precipitation changes are negative throughout the subcontinent, from absorbing aerosol induced stabilization. Stratiform response to the rapid adjustments includes dynamic changes to the divergence of the dry static energy, cloud microphysics and rainfall formation processes. Positive divergence in dry static energy, consistent with moisture convergence, leads to increased water vapour mixing ratios, thus significantly increasing cloud liquid water and cloud fraction in north India. The increases in rainfall formation processes like the autoconversion rate result from those in the liquid water path, which overcome decreases due to increased droplet number concentration. Overall, aerosol induced changes in dynamic dry static energy divergence, rather than on cloud microphysics, play a dominant role in driving the spatial heterogeneity in stratiform and total precipitation change in the Indian region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Code and model data availability

The ECHAM6-HAM2 model data are not publicly available due to large sizes but are available from the corresponding author on reasonable request. The energetics analysis codes are developed in-house based on the methodology described and are also available on reasonable request.

References

  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science (80−) 245:1227–1230. https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  2. Andrews T, Forster PM, Boucher O et al (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett. https://doi.org/10.1029/2010GL043991

    Article  Google Scholar 

  3. Bala G, Caldeira K, Nemani R (2010) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35:423–434

    Article  Google Scholar 

  4. Bhattacharya A, Chakraborty A, Venugopal V (2017) Role of aerosols in modulating cloud properties during active–break cycle of Indian summer monsoon. Clim Dyn 49:2131–2145

    Article  Google Scholar 

  5. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian Summer Monsoon. Science (80−) 334:502–505. https://doi.org/10.1126/science.1204994

    Article  Google Scholar 

  6. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett. https://doi.org/10.1029/2005GL023851

    Article  Google Scholar 

  7. Bony S, Bellon G, Klocke D et al (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–451

    Article  Google Scholar 

  8. Boucher O, Randall D, Artaxo P et al (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 571–657

  9. Cao L, Bala G, Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ Res Lett 7:34015

    Article  Google Scholar 

  10. Comstock KK, Bretherton CS, Yuter SE (2005) Mesoscale variability and drizzle in southeast Pacific stratocumulus. J Atmos Sci 62:3792–3807

    Article  Google Scholar 

  11. Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7:17347. https://doi.org/10.1038/s41598-017-17599-1

    Article  Google Scholar 

  12. Fan J, Rosenfeld D, Yang Y, Zhao C, Leung LR, Li Z (2015) Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys Res Lett 42(14):6066–6075. https://doi.org/10.1002/2015GL064479

    Article  Google Scholar 

  13. Ganguly D, Rasch PJ, Wang H, Yoon JH (2012) Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys Res Lett 39:1–5. https://doi.org/10.1029/2012GL053043

    Article  Google Scholar 

  14. Gettelman A, Morrison H, Terai CR, Wood R (2013) Microphysical process rates and global aerosol–cloud interactions. Atmos Chem Phys 13:9855–9867

    Article  Google Scholar 

  15. Gettelman A, Morrison H, Santos S et al (2015) Advanced two-moment bulk microphysics for global models. Part II: global model solutions and aerosol–cloud interactions. J Clim 28:1288–1307

    Article  Google Scholar 

  16. Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21:58–71

    Article  Google Scholar 

  17. Guo H, Golaz J-C, Donner LJ (2011) Aerosol effects on stratocumulus water paths in a PDF-based parameterization. Geophys Res Lett. https://doi.org/10.1029/2011GL048611

    Article  Google Scholar 

  18. Guo L, Turner AG, Highwood EJ (2015) Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models. Atmos Chem Phys 15:6367–6378

    Article  Google Scholar 

  19. Guo L, Turner AG, Highwood EJ (2016) Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM. J Clim 29:6937–6955

    Article  Google Scholar 

  20. Hazra A, Chaudhari HS, Ranalkar M, Chen J-P (2017) Role of interactions between cloud microphysics dynamics and aerosol in the heavy rainfall event of June 2013 over Uttarakhand India. Q J R Meteorol Soc 143(703):986–998. https://doi.org/10.1002/qj.2983

    Article  Google Scholar 

  21. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  22. Khairoutdinov M, Kogan Y (2000) A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon Weather Rev 128:229–243

    Article  Google Scholar 

  23. Kim MJ, Yeh S-W, Park RJ (2016) Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985–2010. Geophys Res Lett 43:1364–1372

    Article  Google Scholar 

  24. Kostinski AB (2008) Drizzle rates versus cloud depths for marine stratocumuli. Environ Res Lett 3:45019

    Article  Google Scholar 

  25. Krishnan R, Sabin TP, Vellore R et al (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47:1007–1027. https://doi.org/10.1007/s00382-015-2886-5

    Article  Google Scholar 

  26. Kumar KN, Rajeevan M, Pai DS et al (2013) On the observed variability of monsoon droughts over India. Weather Clim Extrem 1:42–50

    Article  Google Scholar 

  27. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z

    Article  Google Scholar 

  28. Lin H, Leaitch WR (1997) Development of an in-cloud aerosol activation parameterization for climate modelling. In: Proceedings of the WMO workshop on measurement of cloud properties for forecasts of weather, air quality and climate. pp 328–335

  29. Lohmann U, Stier P, Hoose C et al (2007a) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos Chem Phys Discuss 7:3719–3761. https://doi.org/10.5194/acpd-7-3719-2007

    Article  Google Scholar 

  30. Lohmann U, Stier P, Hoose C et al (2007b) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos Chem Phys 7:3425–3446

    Article  Google Scholar 

  31. Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198

    Article  Google Scholar 

  32. Medeiros B, Stevens B (2011) Revealing differences in GCM representations of low clouds. Clim Dyn 36:385–399

    Article  Google Scholar 

  33. Muller CJ, O’Gorman PA (2011) An energetic perspective on the regional response of precipitation to climate change. Nat Clim Chang 1:266–271

    Article  Google Scholar 

  34. Mülmenstädt J, Nam C, Salzmann M, Kretzschmar J, L’Ecuyer TS, Lohmann U, Ma P-L, Myhre G, Neubauer D, Stier P, Suzuki K, Wang M, Quaas J (2020) Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Sci Adv 6(22):eaaz6433. https://doi.org/10.1126/sciadv.aaz6433

    Article  Google Scholar 

  35. Myhre G, Forster PM, Samset BH et al (2017) PDRMIP: a precipitation driver and response model intercomparison project-protocol and preliminary results. Bull Am Meteorol Soc 98:1185–1198. https://doi.org/10.1175/BAMS-D-16-0019.1

    Article  Google Scholar 

  36. Neubauer D, Lohmann U, Hoose C, Frontoso MG (2014) Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect. Atmos Chem Phys 14:11–997

    Article  Google Scholar 

  37. Patil N, Venkataraman C, Muduchuru K et al (2019) Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall. Clim Dyn 52:2287–2302. https://doi.org/10.1007/s00382-018-4251-y

    Article  Google Scholar 

  38. Penner JE, Quaas J, Storelvmo T et al (2006) Model intercomparison of indirect aerosol effects. Atmos Chem Phys 6:3391–3405

    Article  Google Scholar 

  39. Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971

    Article  Google Scholar 

  40. Posselt R, Lohmann U (2009) Sensitivity of the total anthropogenic aerosol effect to the treatment of rain in a global climate model. Geophys Res Lett. https://doi.org/10.1029/2008GL035796

    Article  Google Scholar 

  41. Quaas J, Ming Y, Menon S et al (2009) Aerosol indirect effects—general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717

    Article  Google Scholar 

  42. Rajendran K, Kitoh A, Srinivasan J et al (2012) Monsoon circulation interaction with Western Ghats orography under changing climate. Theor Appl Climatol 110:555–571

    Article  Google Scholar 

  43. Ramanathan V, Chung C, Kim D et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333

    Article  Google Scholar 

  44. Richardson TB, Samset BH, Andrews T et al (2016) An assessment of precipitation adjustment and feedback computation methods. J Geophys Res Atmos 175:238

    Google Scholar 

  45. Richardson TB, Forster PM, Andrews T et al (2018) Drivers of precipitation change: an energetic understanding. J Clim 31:9641–9657

    Article  Google Scholar 

  46. Salzmann M, Weser H, Cherian R (2014) Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. J Geophys Res Atmos 119:11321–11337

    Article  Google Scholar 

  47. Samset BH, Myhre G, Forster PM et al (2016) Fast and slow precipitation responses to individual climate forcers: a PDRMIP multimodel study. Geophys Res Lett 43:2782–2791. https://doi.org/10.1002/2016GL068064

    Article  Google Scholar 

  48. Samset BH, Myhre G, Forster PM et al (2018) Weak hydrological sensitivity to temperature change over land, independent of climate forcing. Npj Clim Atmos Sci. https://doi.org/10.1038/s41612-017-0005-5

    Article  Google Scholar 

  49. Schumacher C, Houze RA Jr (2003) Stratiform rain in the tropics as seen by the TRMM precipitation radar. J Clim 16:1739–1756

    Article  Google Scholar 

  50. Seifert A, Stevens B (2010) Microphysical scaling relations in a kinematic model of isolated shallow cumulus clouds. J Atmos Sci 67:1575–1590

    Article  Google Scholar 

  51. Singh D, Bollasina M, Ting M, Diffenbaugh NS (2019) Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Clim Dyn 52:6301–6320

    Article  Google Scholar 

  52. Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172

    Article  Google Scholar 

  53. Suzuki K, Stephens G, Bodas-Salcedo A, Wang M, Golaz J-C, Yokohata T, Koshiro T (2015) Evaluation of the warm rain formation process in global models with satellite observations. J Atmos Sci 72(10):3996–4014. https://doi.org/10.1175/JAS-D-14-0265.1

    Article  Google Scholar 

  54. VanZanten MC, Stevens B, Vali G, Lenschow DH (2005) Observations of drizzle in nocturnal marine stratocumulus. J Atmos Sci 62:88–106

    Article  Google Scholar 

  55. Vinoj V, Rasch PJ, Wang H et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7:308–313. https://doi.org/10.1038/NGEO2107

    Article  Google Scholar 

  56. Wang Z, Lin L, Yang M et al (2017) Disentangling fast and slow responses of the East Asian summer monsoon to reflecting and absorbing aerosol forcings. Atmos Chem Phys 17:11075–11088

    Article  Google Scholar 

  57. Zhang K, O’Donnell D, Kazil J et al (2012) The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos Chem Phys 12:8911–8949. https://doi.org/10.5194/acp-12-8911-2012

    Article  Google Scholar 

  58. Zhang S, Wang M, Ghan SJ et al (2016) On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos Chem Phys 16:2765–2783

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MOEFCC under the NCAP-COALESCE project {Grant No.14/10/2014-CC(Vol.II)}. The authors thank the internal review committee of the NCAP-COALESCE project for their comments and suggestions on this paper. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Ministry. The Ministry does not endorse any products or commercial services mentioned in this publication. We are grateful to functionaries of the Climate Change Division, MOEFCC.

Funding

MOEFCC project under the NCAP-COALESCE project {Grant No.14/10/2014-CC(Vol.II)}.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chandra Venkataraman.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 514 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muduchuru, K., Venkataraman, C. Spatial heterogeneity of aerosol induced rapid adjustments on precipitation response over India: a general circulation model study with ECHAM6-HAM2. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05908-4

Download citation

Keywords

  • South Asian Monsoon
  • Aerosol fast responses
  • Stratiform precipitation
  • Divergence of dry static energy