Skip to main content

Assessment of zonally symmetric and asymmetric components of the Southern Annular Mode using a novel approach

Abstract

The Southern Annular Mode (SAM) is the main mode of variability in the Southern Hemisphere extra-tropical circulation and it is so called because of its zonally symmetric ring-like shape. However, the SAM pattern actually contains noticeable deviations from zonal symmetry. Thus, the purpose of this study is to describe the zonally asymmetric and symmetric components of the SAM variability and their impacts. We regress monthly geopotential height fields at each level onto the asymmetric and symmetric component of the SAM to create two new indices: Asymmetric SAM (A-SAM) and Symmetric SAM (S-SAM). In the troposphere, the A-SAM is associated with a zonal wave 3 which is rotated a quarter wavelength with respect to the climatological zonal wave 3, is much stronger in the Pacific ocean, where it extends vertically to the stratosphere with an equivalent barotropic structure. On the other hand, the S-SAM is associated with negative geopotential height anomalies over Antarctica surrounded by a zonally symmetric ring of positive geopotential height anomalies. The observed relationship between the El Niño Southern Oscillation and the SAM is fully explained by the A-SAM index. The positive trend of the SAM is present only in its symmetric component. Despite this, the SAM is becoming more zonally asymmetric. The regional impacts of the SAM in temperature and precipitation are strongly affected by its asymmetric component. We show that the asymmetric component of the SAM has its own unique variability, trends and impacts, some of these signals are only evident when the two SAM components are separated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Availability of data and materials

The SAM, A-SAM and S-SAM indices are available at http://www.cima.fcen.uba.ar/~elio.campitelli/asymsam/. All data used in this paper is freely available from their respective sources: ERA5 data can be obtained via the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp/#!/dataset/reanalysis-era5-pressure-levels-monthly-means/). CMAP Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/data/gridded/data.cmap.html. The Oceanic Niño Index is available via NOAA’s Climate Prediction Center: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt.

Code availability

A version-controlled repository of the code used to create this analysis, including the code used to download the data can be found at https://github.com/eliocamp/asymsam.

References

  1. Albers S, Campitelli E (2020) Rsoi: Import Various Northern and Southern Hemisphere Climate Indices

  2. Allaire J, Horner J, Xie Y, Marti V, Porte N (2019) Markdown: Render Markdown with the c Library ‘Sundown’

  3. Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern Annular Mode trends. J Clim 19(12):2896–2905. https://doi.org/10.1175/JCLI3774.1

    Article  Google Scholar 

  4. Baldwin MP (2001) Annular modes in global daily surface pressure. Geophys Res Lett 28(21):4115–4118. https://doi.org/10.1029/2001GL013564

    Article  Google Scholar 

  5. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581–584. https://doi.org/10.1126/science.1063315

    Article  Google Scholar 

  6. Baldwin MP, Thompson DWJ (2009) A critical comparison of stratosphere–troposphere coupling indices. Q J Royal Meteorol Soc 135(644):1661–1672. https://doi.org/10.1002/qj.479

    Article  Google Scholar 

  7. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 39(2):179–229. https://doi.org/10.1029/1999RG000073

    Article  Google Scholar 

  8. Bamston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related sst region in the equatorial pacific: research note. Atmosphere-Ocean 35(3):367–383. https://doi.org/10.1080/07055900.1997.9649597

    Article  Google Scholar 

  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc: Series B (Methodological) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  10. Cai W, McPhaden MJ, Grimm AM, Rodrigues RR, Taschetto AS, Garreaud RD, Dewitte B, Poveda G, Ham YG, Santoso A, Ng B, Anderson W, Wang G, Geng T, Jo HS, Marengo JA, Alves LM, Osman M, Li S, Wu L, Karamperidou C, Takahashi K, Vera C (2020) Climate impacts of the El Niño-Southern Oscillation on South America. Nat Rev Earth & Environ 1(4):215–231. https://doi.org/10.1038/s43017-020-0040-3

    Article  Google Scholar 

  11. Campitelli E (2020) metR: tools for easier analysis of meteorological fields. https://doi.org/10.5281/zenodo.2593516

  12. Chung C, Nigam S (1999) Weighting of geophysical data in principal component analysis. J Geophys Res: Atmos 104(D14):16925–16928. https://doi.org/10.1029/1999JD900234

    Article  Google Scholar 

  13. Clem KR, Fogt RL (2013) Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. J Geophys Res: Atmos 118(20):11481–11492. https://doi.org/10.1002/jgrd.50860

    Article  Google Scholar 

  14. Dowle M, Srinivasan A, Gorecki J, Chirico M, Stetsenko P, Short T, Lianoglou S, Antonyan E, Bonsch M, Parsonage H, Ritchie S, Ren K, Tan X, Saporta R, Seiskari O, Dong X, Lang M, Iwasaki W, Wenchel S, Broman K, Schmidt T, Arenburg D, Smith E, Cocquemas F, Gomez M, Chataignon P, Blaser N, Selivanov D, Riabushenko A, Lee C, Groves D, Possenriede D, Parages F, Toth D, Yaramaz-David M, Perumal A, Sams J, Morgan M, Quinn M, @javrucebo, @marc-outins, Storey R, Saraswat M, Jacob M, Schubmehl M, Vaughan D, Hocking T, Silvestri L, Barrett T, Hester J, Damico A, Freundt S, Simons D, de Andrade ES, Miller C, Meldgaard JP, Tlapak V, Ushey K (2020) Data.table: Extension of ’data.frame’

  15. Fan K (2007) Zonal asymmetry of the Antarctic Oscillation. Geophys Res Lett. https://doi.org/10.1029/2006GL028045

    Article  Google Scholar 

  16. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J Clim 19(6):979–997. https://doi.org/10.1175/JCLI3671.1

    Article  Google Scholar 

  17. Fogt RL, Marshall GJ (2020) The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim Change 11(4):e652. https://doi.org/10.1002/wcc.652

    Article  Google Scholar 

  18. Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36(7):1555–1576. https://doi.org/10.1007/s00382-010-0905-0

    Article  Google Scholar 

  19. Fogt RL, Jones JM, Renwick J (2012) Seasonal Zonal Asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J Clim 25(18):6253–6270. https://doi.org/10.1175/JCLI-D-11-00474.1

    Article  Google Scholar 

  20. Garreaud R (2007) Precipitation and circulation covariability in the extratropics. J Clim 20(18):4789–4797. https://doi.org/10.1175/JCLI4257.1

    Article  Google Scholar 

  21. Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett. https://doi.org/10.1029/2005GL023640

    Article  Google Scholar 

  22. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett. https://doi.org/10.1029/2006GL027721

    Article  Google Scholar 

  23. Gillett NP, Fyfe JC, Parker DE (2013) Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys Res Lett 40(10):2302–2306. https://doi.org/10.1002/grl.50500

    Article  Google Scholar 

  24. Gong D, Wang S (1999) Definition of Antarctic Oscillation index. Geophys Res Lett 26(4):459–462. https://doi.org/10.1029/1999GL900003

    Article  Google Scholar 

  25. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere Annular Mode. J Clim 20(11):2452–2467. https://doi.org/10.1175/JCLI4134.1

    Article  Google Scholar 

  26. Hendon HH, Lim EP, Nguyen H (2014) Seasonal variations of subtropical precipitation associated with the Southern Annular Mode. J Clim 27(9):3446–3460. https://doi.org/10.1175/JCLI-D-13-00550.1

    Article  Google Scholar 

  27. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara GD, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global reanalysis. Q J Royal Meteorol Soc 146(730):1999–2049.

    Article  Google Scholar 

  28. Ho M, Kiem AS, Verdon-Kidd DC (2012) The Southern Annular Mode: a comparison of indices. Hydrol Earth Syst Sci 16(3):967–982. https://doi.org/10.5194/hess-16-967-2012

    Article  Google Scholar 

  29. Holton JR, Tan HC (1980) The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J Atmos Sci 37(10):2200–2208. https://doi.org/10.1175/1520-0469(1980)037h2200:TIOTEQi2.0.CO;2

    Article  Google Scholar 

  30. Hufkens K, Stauffer R, Campitelli E (2019) ecmwfr: programmatic interface to the two european centre for medium-range weather forecasts API services. (Version v1.2.0). Zenodo. https://doi.org/10.5281/zenodo.2647541

  31. Jones JM, Fogt RL, Widmann M, Marshall GJ, Jones PD, Visbeck M (2009) Historical SAM variability. Part I: century-length seasonal reconstructions. J Clim 22(20):5319–5345. https://doi.org/10.1175/2009JCLI2785.1

    Article  Google Scholar 

  32. Jones ME, Bromwich DH, Nicolas JP, Carrasco J, Plavcová E, Zou X, Wang SH (2019) Sixty years of Widespread warming in the southern middle and high latitudes (1957–2016). J Clim 32(20):6875–6898. https://doi.org/10.1175/JCLI-D-18-0565.1

    Article  Google Scholar 

  33. Karoly DJ (1989) Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2(11):1239–1252. https://doi.org/10.1175/1520-0442(1989)002h1239:SHCFAWi2.0.CO;2

    Article  Google Scholar 

  34. Katz RW, Brown BG (1991) The problem of multiplicity in research on teleconnections. Int J Climatol 11(5):505–513. https://doi.org/10.1002/joc.3370110504

    Article  Google Scholar 

  35. Kidson JW (1988) Interannual variations in the Southern hemisphere circulation. J Clim 1(12):1177–1198. https://doi.org/10.1175/1520-0442(1988)001h1177:IVITSHi2.0.CO;2

    Article  Google Scholar 

  36. Lim EP, Hendon HH, Arblaster JM, Delage F, Nguyen H, Min SK, Wheeler MC (2016) The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys Res Lett 43(13):7160–7167. https://doi.org/10.1002/2016GL069453

    Article  Google Scholar 

  37. Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16(24):4134–4143. https://doi.org/10.1175/1520-0442(2003)016h4134:TITSAMi2.0.CO;2

    Article  Google Scholar 

  38. Marshall GJ, Thompson DWJ (2016) The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J Geophys Res: Atmos 121(7):3276–3289. https://doi.org/10.1002/2015JD024665

    Article  Google Scholar 

  39. Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett. https://doi.org/10.1029/2004GL019952

    Article  Google Scholar 

  40. Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44(5):877–902. https://doi.org/10.1175/1520-0469(1987)044h0877:SADOPAi2.0.CO;2

    Article  Google Scholar 

  41. Nicolas JP, Bromwich DH (2014) New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses. J Clim 27(21):8070–8093. https://doi.org/10.1175/JCLI-D-13-00733.1

    Article  Google Scholar 

  42. R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  43. Raphael MN (2004) A zonal wave 3 index for the Southern Hemisphere. Geophys Res Lett. https://doi.org/10.1029/2004GL020365

    Article  Google Scholar 

  44. Rogers JC, van Loon H (1982) Spatial variability of sea level pressure and 500 mb height anomalies over the Southern hemisphere. Mon Wea Rev 110(10):1375–1392. https://doi.org/10.1175/1520-0493(1982)110h1375:SVOSLPi2.0.CO;2

    Article  Google Scholar 

  45. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation index. Mon Wea Rev 115(9):2161–2165. https://doi.org/10.1175/1520-0493(1987)115h2161:AEOTTSi2.0.CO;2

    Article  Google Scholar 

  46. Rosso FV, Boiaski NT, Ferraz SET, Robles TC (2018) Influence of the Antarctic Oscillation on the South Atlantic Convergence Zone. Atmosphere 9(11):431. https://doi.org/10.3390/atmos9110431

    Article  Google Scholar 

  47. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for Kernel density estimation. J Royal Stat Soc Series B (Methodological) 53(3):683–690

    Article  Google Scholar 

  48. Silvestri G, Vera C (2009) Nonstationary impacts of the Southern Annular Mode on Southern Hemisphere climate. J Clim 22(22):6142–6148. https://doi.org/10.1175/2009JCLI3036.1

    Article  Google Scholar 

  49. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. https://doi.org/10.1175/2007JCLI2100.1

    Article  Google Scholar 

  50. Vasconcellos FC, Gava MLLM, Sansigolo CA (2020) Statistical analysis of the relationship between Quasi-Biennial Oscillation and Southern Annular Mode. Atmósfera

  51. Vose RS, Arndt D, Banzon VF, Easterling DR, Gleason B, Huang B, Kearns E, Lawrimore JH, Menne MJ, Peterson TC, Reynolds RW, Smith TM, Williams CN, Wuertz DB (2012) NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteorol Soc 93(11):1677–1685. https://doi.org/10.1175/BAMS-D-11-00241.1

    Article  Google Scholar 

  52. Walker SGT (1914) Correlation in Seasonal Variations of Weather, III: On the Criterion for the Reality of Relationships Or Periodicities. Meteorological Office

  53. Watson PAG, Gray LJ (2014) How does the Quasi-Biennial Oscillation affect the stratospheric polar vortex? J Atmos Sci 71(1):391–409. https://doi.org/10.1175/JAS-D-13-096.1

    Article  Google Scholar 

  54. Wickham H (2009) Ggplot2: Elegant Graphics for Data Analysis. Use R!, Springer-Verlag, New York, https://doi.org/10.1007/978-0-387-98141-3

  55. Wilks DS (2016) “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull Amer Meteor Soc 97(12):2263–2273. https://doi.org/10.1175/BAMS-D-15-00267.1

  56. Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31(7):1074–1087. https://doi.org/10.1002/joc.2336

    Article  Google Scholar 

  57. Xie Y (2015) Dynamic Documents with R and Knitr, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  58. Xie P, Arkin PA (1997) Global precipitation: a 17-Year monthly analysis based on Gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558. https://doi.org/10.1175/1520-0477(1997)078h2539:GPAYMAi2.0.CO;2

    Article  Google Scholar 

  59. Zamboni L, Mechoso CR, Kucharski F (2010) Relationships between upper-level circulation over South America and Rainfall over Southeastern South America: a physical base for seasonal predictions. J Clim 23(12):3300–3315. https://doi.org/10.1175/2009JCLI3129.1

    Article  Google Scholar 

  60. Zhang R, Tian W, Wang T (2020) Role of the quasi-biennial oscillation in the downward extension of stratospheric northern annular mode anomalies. Clim Dyn 55(3):595–612. https://doi.org/10.1007/s00382-020-05285-4

    Article  Google Scholar 

Download references

Acknowledgements

NOAA Global Surface Temperature (NOAAGlobalTemp) data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/. We are grateful to the reviewers for their constructive comments that improved the manuscript.

Funding

The research was supported by UBACyT20020170100428BA and the CLIMAX Project funded by Belmont Forum/ANR-15-JCL/-0002-01. Elio Campitelli was supported by a PhD Grant from CONICET, Argentina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elio Campitelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

382_2021_5896_MOESM1_ESM.png

Supplementary figure 1: 50 hPa geopotential height zonal anomalies (meters) of composites of positive and negative SAM months selected using \(\pm 1\) standard deviation as threshhold for the 1979–2018 period. Numbers in the column headers are the spatial correlation between SAM+ and SAM- composites and number of monthly fields used to construct each composite (PNG 357 kb)

Supplementary figure 2: Same as Supplementary figure 1 but for 700 hPa geopotential height (PNG 388 kb)

382_2021_5896_MOESM3_ESM.png

Supplementary figure 3: Regression coefficients of 50 hPa and 700 hPa geopotential height zonal anomalies (meters) onto the standardised timeseries of the leading EOF computed for each season independently for the 1979–2018 period (PNG 215 kb)

382_2021_5896_MOESM4_ESM.png

Supplementary figure 4: Regression of 50 hPa and 700 hPa geopotential height zonal anomalies (meters) onto the standardised timeseries of the leading EOF computed for the periods 1979–1998 and 1999–2018. Spatial correlation between both fields is 0.86 for the 50 hPa fields and 0.76 for the 700 hPa fields (PNG 337 kb)

382_2021_5896_MOESM5_ESM.png

Supplementary figure 5: Lag-correlation between the A-SAM and the S-SAM index at each level. Negative lags imply A-SAM leading S-SAM and vice versa. For the 1979–2018 period (PNG 387 kb)

382_2021_5896_MOESM6_ESM.png

Supplementary figure 6: Fourier spectrum of each timeseries computed as Fourier transform smoothed with modified Daniell smoothers with widths 3 and 5. The shading indicates de 95% confidence area derived by computing the spectrum for 5000 simulated samples from a fitted autorregressive model and (95% of the simulated sampels had an amplitude equal or lower). The light line indicates the theoretical expected amplitude from the autorregressive model. For the 1979–2018 period (PNG 208 kb)

382_2021_5896_MOESM7_ESM.png

Supplementary figure 7: Regression of seasonal mean surface land air and sea temperature anomalies (Kelvin) with SAM, A-SAM and S-SAM for the 1979–2018 period. Black contours indicate areas with p-value smaller than 0.05 controlling for False Detection Rate. Gray areas in Antarctica have more than 15% of missing data (PNG 929 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Campitelli, E., Díaz, L.B. & Vera, C. Assessment of zonally symmetric and asymmetric components of the Southern Annular Mode using a novel approach. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05896-5

Download citation

Keywords

  • Southern Annular Mode
  • General circulation
  • Zonally asymmetric circulation
  • El Niño Southern Oscillation