Skip to main content

Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multi-mission satellite altimetry data

Abstract

Wave heights in the Baltic Sea in the period 1992–2015 have mainly increased in the sea’s western parts. The linear trends in the winter wave heights exhibit a prominent meridional pattern. Using the technique of Empirical Orthogonal Functions (EOF) applied to multi-mission satellite altimetry data, we explain a large part of this increase with the Scandinavia pattern, North Atlantic Oscillation and Arctic Oscillation climatic indices. The winter trends show a statistically significant negative correlation (correlation coefficient –0.47 ± 0.19) with the Scandinavia pattern and a positive correlation with the North Atlantic Oscillation (0.31 ± 0.22) and Arctic Oscillation (0.42 ± 0.20). The meridional pattern is associated with more dominant north-westerly and westerly winds driven by the Scandinavia pattern and North Atlantic Oscillation, respectively. All three climatic indices show a statistically significant time-variable correlation with Baltic Sea wave heights during the winter season. When the Scandinavia pattern’s influence is strong, the North Atlantic and Arctic Oscillation effects are low and vice versa. The results are backed up by simulations using synthetic data that demonstrate that the percentage of variance explained using EOF analysis from the satellite-derived wave measurements is directly related to the percentage of noise in the data and that the retrieved spatial patterns are insensitive to the level of noise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data and material

The RADS satellite altimetry data are available at http://rads.tudelft.nl/rads/rads.shtml (accessed 1 March 2021).

Code availability

From the authors on request.

References

  1. Andersson HC (2002) Influence of long-term regional and large-scale atmospheric calculation on the Baltic sea level. Tellus A Dyn Meteorol Oceanogr 54(1):76–88. https://doi.org/10.3402/tellusa.v54i1.12125

    Article  Google Scholar 

  2. Barbariol F, Bidlot J-R, Cavaleri L, Sclavo M, Thomson J, Benetazzo A (2019) Maximum wave heights from global model reanalysis. Prog Oceanogr 175:139–160. https://doi.org/10.1016/j.pocean.2019.03.009

    Article  Google Scholar 

  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126. https://doi.org/10.1175/1520-0493(1987)115%3c1083:CSAPOL%3e2.0.CO;2

    Article  Google Scholar 

  4. Bednorz E, Czernecki B, Tomczyk AM, Półrolniczak M (2018) If not NAO then what?—regional circulation patterns governing summer air temperatures in Poland. Theoret Appl Climatol 136(3):1325–1337. https://doi.org/10.1007/s00704-018-2562-x

    Article  Google Scholar 

  5. Bertin X, Prouteau E, Letetrel C (2013) A significant increase in wave height in the North Atlantic Ocean over the 20th century. Global Planet Change 106:77–83. https://doi.org/10.1016/j.gloplacha.2013.03.009

    Article  Google Scholar 

  6. Björkqvist J-V, Lukas I, Alari V, van Vledder GP, Hulst S, Pettersson H, Behrens A, Männik A (2018) Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng 152:57–71. https://doi.org/10.1016/j.oceaneng.2018.01.048

    Article  Google Scholar 

  7. Björkqvist J-V, Rikka S, Alari V, Männik A, Tuomi L, Pettersson H (2020) Wave height return periods from combined measurement-model data: a Baltic Sea case study. Nat Hazard 20(12):3593–3609. https://doi.org/10.5194/nhess-20-3593-2020

    Article  Google Scholar 

  8. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res Oceans 104(4):7649–7666. https://doi.org/10.1029/98JC02622

    Article  Google Scholar 

  9. Brenner AC, Blndschadler RA, Thomas RH, Zwally HJ (1983) Slope-induced errors in radar altimetry over continental ice sheets. J Geophys Res Oceans 88(C3):1617–1623. https://doi.org/10.1029/JC088iC03p01617

    Article  Google Scholar 

  10. Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J R Meteorol Soc 133(629):2117–2131. https://doi.org/10.1002/qj.173

    Article  Google Scholar 

  11. Cañellas B, Orfila A, Méndez F, Álvarez A, Tintoré J (2010) Influence of the NAO on the northwestern Mediterranean wave climate. Sci Mar 74(1):55–64. https://doi.org/10.3989/scimar.2010.74n1055

    Article  Google Scholar 

  12. Cavaleri L, Bertotti L (1997) In search of the correct wind and wave fields in a minor basin. Mon Weather Rev 125(8):1964–1975. https://doi.org/10.1175/1520-0493(1997)125<1964:ISOTCW>2.0.CO;2

    Article  Google Scholar 

  13. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17(13):2609–2625. https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2

    Article  Google Scholar 

  14. Cieślikiewicz W, Paplińska-Swerpel B (2008) A 44-year hindcast of wind wave fields over the Baltic Sea. Coast Eng 55(11):894–905. https://doi.org/10.1016/j.coastaleng.2008.02.017

    Article  Google Scholar 

  15. Gao T, Yu J-Y, Paek H (2017) Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theoret Appl Climatol 129(3):815–831. https://doi.org/10.1007/s00704-016-1801-2

    Article  Google Scholar 

  16. Hannachi A (2004) A Primer for EOF Analysis of Climate Data. Department of Meteorology, University of Reading: Reading, UK. http://www.o3d.org/eas-6490/lectures/EOFs/eofprimer.pdf. Accessed 10 Jun 2019

  17. Hasselmann K, Hasselmann S, Bauer E et al (1988) The WAM Model—A third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

    Article  Google Scholar 

  18. Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the Southern Hemisphere. Int J Climatol 30(4):475–491. https://doi.org/10.1002/joc.1900

    Article  Google Scholar 

  19. Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013) Projected changes in wave climate from a multi-model ensemble. Nat Clim Chang 3(5):471–476. https://doi.org/10.1038/nclimate1791

    Article  Google Scholar 

  20. Irannezhad M, Marttila H, Kløve B (2014) Long-term variations and trends in precipitation in Finland. Int J Climatol 34(10):3139–3153. https://doi.org/10.1002/joc.3902

    Article  Google Scholar 

  21. Izaguirre C, Méndez FJ, Menéndez M, Losada IJ (2011) Global extreme wave height variability based on satellite data. Geophys Res Lett 38(10):L10607. https://doi.org/10.1029/2011GL047302

    Article  Google Scholar 

  22. Jaagus J (2009) Regionalisation of the precipitation pattern in the Baltic Sea drainage basin and its dependence on large-scale atmospheric circulation. Boreal Environ Res 14:31–44

    Google Scholar 

  23. Jacobeit J, Jönsson P, Bärring L, Beck C, Ekström M (2001) Zonal indices for Europe 1780–1995 and running correlations with temperature. Clim Change 48(1):219–241. https://doi.org/10.1023/A:1005619023045

    Article  Google Scholar 

  24. Jevrejeva S, Moore JC, Grinsted A (2003) Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. J Gerontol Ser A Biol Med Sci 108(D21):4677. https://doi.org/10.1029/2003JD003417

    Article  Google Scholar 

  25. Jevrejeva S, Moore JC, Woodworth PL, Grinsted A (2005) Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method. Tellus Ser A Dyn Meteorol Oceanogr 57(2):183–193. https://doi.org/10.3402/tellusa.v57i2.14609

    Article  Google Scholar 

  26. Jönsson A, Broman B, Rahm L (2003) Variations in the Baltic Sea wave fields. Ocean Eng 30(1):107–126. https://doi.org/10.1016/S0029-8018(01)00103-2

    Article  Google Scholar 

  27. Kelpšaitė L, Herrmann H, Soomere T (2008) Wave regime differences along the eastern coast of the Baltic Proper. Proc Est Acad Sci 57(4):225–231. https://doi.org/10.3176/proc.2008.4.04

    Article  Google Scholar 

  28. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Kudryavtseva NA, Soomere T (2016) Validation of the multi-mission altimeter wave height data for the Baltic Sea region. Estonian J Earth Sci 65(3):161–175. https://doi.org/10.3176/earth.2016.13

    Article  Google Scholar 

  30. Kudryavtseva N, Soomere T (2017) Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth Syst Dyn 8(3):697–706. https://doi.org/10.5194/esd-8-697-2017

    Article  Google Scholar 

  31. Kudryavtseva N, Kussembayeva K, Rakisheva ZB, Soomere T (2019) Spatial variations in the Caspian Sea wave climate in 2002–2013 from satellite altimetry. Estonian J Earth Sci 68(4):225–240. https://doi.org/10.3176/earth.2019.16

    Article  Google Scholar 

  32. Kudryavtseva N, Soomere T, Männikus R (2021) Non-stationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961–2018. Nat Hazard 21(4):1279–1296. https://doi.org/10.5194/nhess-21-1279-2021

    Article  Google Scholar 

  33. Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim Dyn 25(6):611–623. https://doi.org/10.1007/s00382-005-0025-4

    Article  Google Scholar 

  34. Madsen KS, Høyer JL, Tscherning CC (2007) Near-coastal satellite altimetry: Sea surface height variability in the North Sea-Baltic Sea area. Geophys Res Lett 34(14):L14601. https://doi.org/10.1029/2007GL029965

    Article  Google Scholar 

  35. Männikus R, Soomere T, Viška M (2020) Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961–2018. Estuar Coast Shelf Sci 245:106827. https://doi.org/10.1016/j.ecss.2020.106827

    Article  Google Scholar 

  36. Masselink G, Castelle B, Scott T, Dodet G, Suanez S, Jackson D, Floc’h F (2016) Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys Res Lett 43(5):2135–2143. https://doi.org/10.1002/2015GL067492

    Article  Google Scholar 

  37. Medvedeva A, Myslenkov S, Medvedev I, Arkhipkin V, Krechik V, Dobrolyubov S (2016) Numerical modeling of the wind waves in the Baltic Sea using the rectangular and unstructured grids and the reanalysis NCEP/CFSR. In: Proceedings of the Hydrometeorological Research Center of the Russian Federation 362:37–54 (in Russian with English summary)

  38. Mietus M, von Storch H (1997) Reconstruction of the wave climate in the proper Baltic basin, April 1947–March 1988. GKSS Report 97/E/28, Geesthacht.

  39. Myslenkov SA, Medvedeva A, Arkhipkin V, Markina M, Surkova G, Krylov A, Dobrolyubov S, Zilitinkevich S, Koltermann P (2018) Long-term statistics of storms in the Baltic, Barents and White seas and their future climate projections. Geogr Environ Sustain 11(1):93–112. https://doi.org/10.24057/2071-9388-2018-11-1-93-112

    Article  Google Scholar 

  40. Nezlin NP, McWilliams JC (2003) Satellite data, empirical orthogonal functions, and the 1997–1998 El Nino off California. Remote Sens Environ 84(2):234–254. https://doi.org/10.1016/S0034-4257(02)00109-8

    Article  Google Scholar 

  41. Nikolkina I, Soomere T, Räämet A (2014) Multidecadal ensemble hindcast of wave fields in the Baltic Sea. IEEE/OES Baltic Int Symp (BALTIC). https://doi.org/10.1109/BALTIC.2014.6887854

    Article  Google Scholar 

  42. Niroomandi A, Ma G, Ye X, Lou S, Xue P (2018) Extreme value analysis of wave climate in Chesapeake Bay. Ocean Eng 159:22–36. https://doi.org/10.1016/j.oceaneng.2018.03.094

    Article  Google Scholar 

  43. Omstedt A, Pettersen C, Rodhe J, Winsor P (2004) Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Climate Res 25(3):205–216. https://doi.org/10.3354/cr025205

    Article  Google Scholar 

  44. Passaro M, Cipollini P, Benveniste J (2015) Annual sea level variability of the coastal ocean: the Baltic Sea-North Sea transition zone. J Geophys Res Oceans 120(4):3061–3078. https://doi.org/10.1002/2014JC010510

    Article  Google Scholar 

  45. Patra A, Bhaskaran PK (2016) Trends in wind-wave climate over the head Bay of Bengal region. Int J Climatol 36(13):4222–4240. https://doi.org/10.1002/joc.4627

    Article  Google Scholar 

  46. Räämet A, Soomere T (2021) Spatial pattern of quality of historical wave climate reconstructions for the Baltic Sea. Boreal Environ Res 26:29–41

    Google Scholar 

  47. Räämet A, Soomere T, Zaitseva-Pärnaste I (2010) Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea. Proc Est Acad Sci 59(2):182–192. https://doi.org/10.3176/proc.2010.2.18

    Article  Google Scholar 

  48. Rikka S, Pleskachevsky A, Uiboupin R, Jacobsen S (2018) Sea state in the Baltic Sea from space-borne high-resolution synthetic aperture radar imagery. Int J Remote Sens 39(4):1256–1284. https://doi.org/10.1080/01431161.2017.1399475

    Article  Google Scholar 

  49. Różyński G (2010) Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng 37(2–3):186–199. https://doi.org/10.1016/j.oceaneng.2009.11.008

    Article  Google Scholar 

  50. Sartini L, Besio G, Cassola F (2017) Spatio-temporal modelling of extreme wave heights in the Mediterranean Sea. Ocean Model 117:52–69. https://doi.org/10.1016/j.ocemod.2017.07.001

    Article  Google Scholar 

  51. Scharroo R (2012) RADS version 3.1 user manual and format specifications. http://rads.tudelft.nl/rads/radsmanual.pdf. Accessed 6 Mar 2020

  52. Scharroo R, Leuliette EW, Lillibridge JL, Byrne D, Naeije MC, Mitchum GT (2013) RADS: Consistent multi-mission products in Proc Symp on 20 Years of Progress in Radar Altimetry, 20–28 September 2012, Venice, Eur. Space Agency Spec. Publ., ESA SP-710

  53. Shimura T, Mori N, Mase H (2013) Ocean waves and teleconnection patterns in the northern hemisphere. J Clim 26(21):8654–8670. https://doi.org/10.1175/JCLI-D-12-00397.1

    Article  Google Scholar 

  54. Soomere T (2005) Wind wave statistics in Tallinn Bay. Boreal Environ Res 10(2):103–118

    Google Scholar 

  55. Soomere T, Eelsalu M (2014) On the wave energy potential along the eastern Baltic Sea coast. Renew Energy 71:221–233. https://doi.org/10.1016/j.renene.2014.05.025

    Article  Google Scholar 

  56. Soomere T, Pindsoo K (2016) Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea. Cont Shelf Res 115:53–64. https://doi.org/10.1016/j.csr.2015.12.016

    Article  Google Scholar 

  57. Soomere T, Räämet A (2011) Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci 7(1):141–150. https://doi.org/10.5194/os-7-141-2011

    Article  Google Scholar 

  58. Soomere T, Räämet A (2014) Decadal changes in the Baltic Sea wave heights. J Mar Syst 129:86–95. https://doi.org/10.1016/j.jmarsys.2013.03.009

    Article  Google Scholar 

  59. Soomere T, Behrens A, Tuomi L, Nielsen JW (2008) Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat Hazards Earth Syst Sci 8(1):37–46. https://doi.org/10.5194/nhess-8-37-2008

    Article  Google Scholar 

  60. Soomere T, Bishop SR, Viška M, Räämet A (2015) An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim Res 62(2):163–171. https://doi.org/10.3354/cr01269

    Article  Google Scholar 

  61. Surkova GV, Arkhipkin VS, Kislov AV (2015) Atmospheric circulation and storm events in the Baltic Sea. Open Geosci 7(1):332–341. https://doi.org/10.1515/geo-2015-0030

    Article  Google Scholar 

  62. Suursaar Ü, Kullas T (2009) Decadal variations in wave heights off Cape Kelba, Saaremaa Island, and their relationships with changes in wind climate. Oceanologia 51(1):39–61. https://doi.org/10.5697/oc.51-1.039

    Article  Google Scholar 

  63. Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus Ser A Dyn Meteorol Oceanogr 59(2):249–260. https://doi.org/10.1111/j.1600-0870.2006.00220.x

    Article  Google Scholar 

  64. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300. https://doi.org/10.1029/98GL00950

    Article  Google Scholar 

  65. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20(1):9–17. https://doi.org/10.3354/cr020009

    Article  Google Scholar 

  66. Tuomi L, Kahma KK, Pettersson H (2011) Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ Res 16(6):451–472

    Google Scholar 

  67. Tuomi L, Kanarik H, Björkqvist J-V, Marjamaa R, Vainio J, Hordoir R, Höglund A, Kahma KK (2019) Impact of ice data quality and treatment on wave hindcast statistics in seasonally ice-covered seas. Front Earth Sci 7:166. https://doi.org/10.3389/feart.2019.00166

    Article  Google Scholar 

  68. Wakelin SL, Woodworth PL, Flather RA, Williams JA (2003) Sea-level dependence on the NAO over the NW European continental shelf. Geophys Res Lett 30(7):1403. https://doi.org/10.1029/2003GL017041

    Article  Google Scholar 

  69. Walker GT, Bliss EW (1932) World weather V. Memoirs R Meteorol Soc 4:53–84

    Google Scholar 

  70. Wang XL, Zwiers FW, Swail VR (2004) North Atlantic ocean wave climate change scenarios for the twenty-first century. J Clim 17(12):2368–2383. https://doi.org/10.1175/1520-0442(2004)017<2368:NAOWCC>2.0.CO;2

    Article  Google Scholar 

  71. Weisse R, von Storch H, Niemeyer HD, Knaack H (2012) Changing North Sea storm surge climate: an increasing hazard? Ocean Coast Manag 68:58–68. https://doi.org/10.1016/j.ocecoaman.2011.09.005

    Article  Google Scholar 

  72. Wolf J, Woolf DK (2006) Waves and climate change in the north-east Atlantic. Geophys Res Lett 33(6):L06604. https://doi.org/10.1029/2005GL025113

    Article  Google Scholar 

  73. Woolf DK, Challenor PG, Cotton PD (2002) Variability and predictability of the North Atlantic wave climate. J Geophys Res Oceans 107(C10):3145. https://doi.org/10.1029/2001JC001124

    Article  Google Scholar 

  74. Zujev M, Elken J, Lagemaa P (2021) Data assimilation of sea surface temperature and salinity using basin-scale reconstruction from empirical orthogonal functions: a feasibility study in the northeastern Baltic Sea. Ocean Sci 17:91–109. https://doi.org/10.5194/os-17-91-2021

    Article  Google Scholar 

Download references

Acknowledgements

The research was co-supported by the institutional financing by the Estonian Ministry of Education and Research (Grant IUT33-3), the Flag-ERA project FuturICT2.0, the Estonian Research Council (Grant PRG1129) and the European Economic Area (EEA) Financial Mechanism 2014–2021 Baltic Research Programme (Grant EMP480). We also acknowledge the support of the Horizon2020 Erasmus+ project CUPAGIS in terms of institutional collaboration. We thank the Radar Altimeter Database System (RADS) database and NOAA Center for Weather and Climate Prediction for providing the data. Comments on the manuscript from anonymous referees are greatly acknowledged.

Funding

The research was co-supported by the institutional financing by the Estonian Ministry of Education and Research (grant IUT33-3), the Flag-ERA project FuturICT2.0, the Estonian Research Council (grant PRG1129) and the European Economic Area (EEA) Financial Mechanism 2014–2021 Baltic Research Programme (grant EMP480).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Kudryavtseva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafzadeh, F., Kudryavtseva, N. & Soomere, T. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multi-mission satellite altimetry data. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05874-x

Download citation

Keywords

  • Baltic Sea
  • Wave climate
  • Satellite altimetry
  • Teleconnections
  • Wave heights
  • Empirical orthogonal functions