Abstract
Future projections in austral winter characteristics of explosive extratropical cyclones (EECs) in three CORDEX Southern Hemisphere domains (Africa-AFR, Australia-AUS and South America-SAM) are investigated. The projections are obtained with a fine resolution (25 km) Regional Climate Model (RegCM4) within the CORDEX-CORE framework driven by three Global Climate Models (GCMs: HadGEM2-ES, MPI-ESM-MR and NorESM-1 M) under the RCP8.5 scenario. The cyclone database was obtained using a tracking scheme applied to 6-hourly mean sea level pressure fields and EECs are selected using the Sanders and Gyakum criterion. EECs represent ~ 13–17% of the total number of extratropical cyclones during austral winter in the ERA-Interim reanalysis (1995–2014), while both GCMs and RegCM4 ensembles underestimate this percentage. The frequency of EECs is projected to increase in AFR and in SAM domains at the end of the twenty-first century. However, the magnitude of the projected changes needs to be considered with caution because it is smaller than the underestimations in the frequency of EECs of both ensembles in the present climate. EECs in the future will be deeper and faster but with a shorter lifetime. Eady Growth Rate composites, when EECs reach the explosive phase, indicate a less baroclinic large-scale environment in the future. On the other hand, the intensification of precipitation associated with EECs in the future indicates an increase in the contribution of the diabatic processes acting to strengthen the local baroclinicity of the EECs.





AUS and c SAM domains








Similar content being viewed by others
Data Availability
The authors declare that all data used in this study are freely available in online repositories described in the methodology.
References
Allen JT, Pezza AB, Black T (2010) Explosive cyclogenesis: a global climatology comparing multiple reanalyses. J Clim 23:6468–6484. https://doi.org/10.1175/2010JCLI3437.1
Ambrizzi T, Reboita MS, da Rocha RP, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America. Ann N Y Acad Sci 1436:98–120. https://doi.org/10.1111/nyas.13932
Bader J, Mesquita MD, Hodges KI, Keenlyside N, Østerhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834. https://doi.org/10.1016/j.atmosres.2011.04.007
Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Dranges H, Roelandt C, Seierstad IA, Hoose C, Kristj ́ansson JE (2013) The Norwegian earth system model, NorESM1-M—Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. https://doi.org/10.5194/gmd-6-687-2013
Bitencourt DP, Fuentes MV, Cardoso CDS (2013) Climatologia de ciclones explosivos para a área ciclogenética da América do Sul. Rev Bras Meteorol 28:43–56. https://doi.org/10.1590/S0102-77862013000100005
Bjerknes J, Solberg H (1922) Life cycle of cyclones and the Polar Front theory of atmospheric circulation. Geophys Publik 3:3–18
Black MT, Pezza AB, Kreft P (2010) An examination of Southwest Pacific explosive cyclones, 1989 to 2009. IOP Conf Ser: Earth Environ Sci 11:012036. https://doi.org/10.1088/1755-1315/11/1/012036
Bullock TA, Gyakum JR (1993) A diagnostic study of cyclogenesis in the western North Pacific Ocean. Mon Wea Rev 121:65–75. https://doi.org/10.1175/1520-0493(1993)121%3c0065:ADSOCI%3e2.0.CO;2
Caballero R, Langen PL (2005) The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys Res Lett 32:L02705. https://doi.org/10.1029/2004GL021581
Carlson TN (1991) Mid-latitude weather systems. Harper Collins, London, p 512
Catto JL, Ackerley D, Booth JF, Champion AJ, Colle BA, Pfahl S, Pinto JG, Quinting JF, Seiler C (2019) The future of midlatitude cyclones. Curr Clim Change Rep 5(407):420. https://doi.org/10.1007/s40641-019-00149-4
Chang EKM (2017) Projected Significant Increase in the Number of Extreme Extratropical Cyclones in the Southern Hemisphere. J Clim 30:4915–4935
Chang EK, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res 117:D23118. https://doi.org/10.1029/2012JD018578
Chen SJ, Kuo YH, Zhang PZ, Bai QF (1992) Climatology of explosive cyclones off the East Asian coast. Mon Wea Rev 120:3029–3035. https://doi.org/10.1175/1520-0493(1992)120%3c3029:COECOT%3e2.0.CO;2
Chen GTJ, Lu CF (1997) On the climatological aspects of explosive cyclones over the Western North Pacific and East Asia Coastal areas. Terr Atmos Ocean Sci 8:427–442
Cione JJ, Raman S (1995) A numerical investigation of surface-induced mesocyclogenesis near the Gulf Stream. Tellus A 47:815–833. https://doi.org/10.1034/j.1600-0870.1995.00122.x
Cohen J (2011) Explosive cyclones. In: Schneider SH, Root TL, Mastrandrea MD (eds) Encyclopedia of climate and weather, volume 1. Oxford University Press, pp. 339–344
Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J, Halloran P (2008) Evaluation of the HadGEM2 model. Hadley Centre Technical Note HCTN 74, Met Office Hadley Centre, Exeter, UK. https://www.metofce.gov.uk/learning/library/publications/science/climate-science
Crescenti GH, Weller RA (1992) Analysis of surface fluxes in the marine atmospheric boundary layer in the vicinity of rapidly intensifying cyclones. J Appl Meteorol 31:831–848. https://doi.org/10.1175/1520-0450(1992)031%3c0831:AOSFIT%3e2.0.CO;2
Crespo NM, da Rocha RP, De Jesus EM (2020a) Cyclones density and characteristics in different reanalyses dataset over South America. In: EGU general assembly 2020. https://doi.org/10.5194/egusphere-egu2020-11316. Online, 4–8 May 2020, EGU2020-11316
Crespo NM, da Rocha RP, Sprenger M, Wernli H (2020b) A potential vorticity perspective on cyclogenesis over centre-eastern South America. Int J Climatol 2020:1–16. https://doi.org/10.1002/joc.6644
Danard MB, Ellenton GE (1980) Physical influences on East Coast cyclogenesis. Atmos Ocean 18(1):65–82
Davis CA (2018) Resolving tropical cyclone intensity in models. Geophys Res Lett 45(4):2082–2087. https://doi.org/10.1002/2017GL076966
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delson C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hers-bach H, Hólm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peu-bey C, Rosnay P, Tavolatto C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
Dias Pinto JR, da Rocha RP (2011) The energy cycle and structural evolution of cyclones over southeastern South America in three case studies. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016217
Eiras-Barca J, Ramos AM, Pinto JG, Trigo RM, Liberato ML, Miguez-Macho G (2018) The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst Dynam 9:91. https://doi.org/10.5194/esd-9-91-2018
Fink AH, Pohle S, Pinto JG, Knippertz P (2012) Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys Res Lett. https://doi.org/10.1029/2012GL051025
Flaounas E, Gray SL, Teubler F (2021) A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems. Weather Clim Dynam 2:255–279. https://doi.org/10.5194/wcd-2-255-2021
Flaounas E, Kelemen FD, Wernli H, Gaetner MG, Reale M, Sanchez-Gomez E, Lionello P, Calmanti S, Podracanin Z, Somot S, Akhtar N, Romera R, Conte D (2018) Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Clim Dyn 51:1023–1040
Frierson DMW (2006) Robust increases in midlatitude static stability in simulations of global warming. Geophys Res Lett 33:L24816. https://doi.org/10.1029/2006GL027504
Frierson DMW, Held IM, Zurita-Gotor P (2006) A gray-radiation aquaplanet moist GCM. Part I: static stability and eddy scale. J Atmos Sci 63:2548–2566. https://doi.org/10.1175/JAS3753.1
Fu G, Sun Y, Sun J, Li P (2020) A 38-year climatology of explosive cyclones over the Northern Hemisphere. Adv Atmos Sci 37:143–159. https://doi.org/10.1007/s00376-019-9106-x
Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev 119(5):1293–1302
Gentry MS, Lackmann GM (2010) Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon Weather Rev 138:688–704. https://doi.org/10.1175/2009MWR2976.1
Gertler CG, O’Gorman PA (2019) Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Proc Natl Acad Sci 116(10):4105–4110. https://doi.org/10.1073/pnas.1812312116
Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, GaylerV HH, Hollweg H, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597
Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, Obrien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple COR-DEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018
Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX Framework. World Meteorol Organ (WMO) Bull 58(3):175
Gramcianinov CB, Campos RM, Soares CG, Camargo R (2020) Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean Eng 213:107745
Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016
Gyakum JR (1983a) On the evolution of the QE-II storm. I: synoptic aspects. Mon Weather Rev 111:1137–1155. https://doi.org/10.1175/1520-0493(1983)111%3c1137:OTEOTI%3e2.0.CO;2
Gyakum JR (1983b) On the evolution of the QE-II storm. II: dynamic and thermodynamic structure. Mon Weather Rev 111:1156–1173. https://doi.org/10.1175/1520-0493(1983)111%3c1
Heo KY, Ha KJ, Ha T (2019) Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a potential vorticity perspective: case study and numerical simulations. Atmosphere 10:22. https://doi.org/10.3390/atmos10060322
Holton JR (2004) An introduction to dynamic meteorology. Acad Press, Amsterdam
Hoskins BJ, Hodges KI (2005) A new perspective on Southern Hemisphere storm tracks. J Clim 18(20):4108–4129
Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864
Hwang Y-T, Frierson DMW (2010) Increasing atmospheric poleward energy transport with global warming. Geophys Res Lett 37:L24807. https://doi.org/10.1029/2010GL045440
IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY 1535. https://doi.org/10.1017/CBO9781107415324
Kodama C, Stevens B, Mauritsen T, Seiki T, Satoh M (2019) A new perspective for future precipitation change from intense extratropical cyclones. Geophys Res Lett 46:12435–12444. https://doi.org/10.1029/2019GL084001
Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2011) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol 31:1785–1802. https://doi.org/10.1002/joc.2203
Kuo YH, Reed RJ (1988) Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon Weather Rev 116:2081–2105. https://doi.org/10.1175/1520-0493(1988)116%3c2081:NSOAED%3e2.0.CO;2
Kuwano-Yoshida A, Asuma Y (2008) Numerical study of explosively developing extratropical cyclones in the northwestern Pacific region. Mon Weather Rev 136:712–740. https://doi.org/10.1175/2007MWR2111.1
Kuwano-Yoshida A, Sasaki H, Sasai Y (2016) Impact of explosive cyclones on the deep ocean in the North Pacific using an eddy-resolving ocean general circulation model. Geophys Res Lett. https://doi.org/10.1002/2016GL071367
Leslie LM, Leplastrier M, Buckley BW, Qi L (2005) Climatology of meteorological “bombs” in the New Zealand region. Meteorol Atmos Phys 89:207–214. https://doi.org/10.1007/s00703-005-0129-8
Liberato MLR, Pinto JG, Trigo IF, Trigo RM (2011) Klaus - an exceptional winter storm over northern Iberia and southern France. Weather 66:330–334. https://doi.org/10.1002/wea.755
Lim EP, Simmonds I (2002) Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon Weather Rev 130:2188–2209. https://doi.org/10.1175/1520-0493(2002)130%3c2188:ECDITS%3e2.0.CO;2
Lionello P, Conte D, Reale M (2019) The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast. Nat Hazards Earth Syst Sci 19:1541–1564. https://doi.org/10.5194/nhess-19-1541-2019,2019
Lionello P, Dalan F, Elvini E (2002) Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios. Clim Res 22:147–159. https://doi.org/10.3354/cr022147
Lionello P, Trigo IF, Gil V, Liberato ML, Nissen KM, Pinto JG et al (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A Dyn Meteorol Oceanogr 68(1):29391
Lionello P, Barriopedro D, Ferrarin C, Nicholls R., Orlic M, Raicich F, Reale M, Umgiesser G, Vousdoukas M, Zanchettin D (2020) Extremes floods of Venice: characteristics, dynamics, past and future evolution. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2020-359
Di Luca A, Evans JP, Pepler A et al (2015) Resolution sensitivity of cyclone climatology over eastern Australia using six reanalysis products. J Clim 28:9530–9549. https://doi.org/10.1175/JCLI-D-14-00645.1
Marrafon VH, Reboita MS, da Rocha RP, Crespo NM (2021) Extratropical cyclones in the Southern Hemisphere: comparison among different reanalyses. Climatol Brazil J 17(28):48–73. https://doi.org/10.5380/abclima.v28i0.74460
McMurdie L, Houze RA (2006) Weather systems. In: Wallace JM, Hobbs PV (eds) Atmospheric sciences—an introductory survey, 2a edn. Academic Press, London, pp 313–373
Michaelis AC, Willison J, Lackmann GM, Robinson WA (2017) Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo–global warming simulations. J Clim 30(17):6905–6925
Neiman PJ, Shapiro MA (1993) The life cycle of an extratropical marine cyclone. Part I: frontal cyclone evolution and thermodynamics air-sea interaction. Mon Weather Rev 121:2153–2176. https://doi.org/10.1175/1520-0493(1993)121%3C2153:TLCOAE%3E2.0.CO;2
Nesterov ES (2010) Explosive cyclogenesis in the northeastern Part of the Atlantic Ocean. Russ Meteorol Hydrol 35:680–686. https://doi.org/10.3103/S1068373910100055
Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J, Gulev S, Hanley J, Hewson T, Inatsu M, Keay K, Kew SF, Kindem I, Leckebusch GC, Liberato MLR, Lionello P, Mokhov II, Pinto JG, Raible CC, Reale M, Rudeva I, Schuster M, Simmonds I, Sinclair M, Sprenger M, Tilinina ND, Trigo IF, Ulbrich S, Ulbrish U, Wang XL, Wernli H (2013) Imilast: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94:529–547. https://doi.org/10.1175/BAMS-D-11-00154.1
Nuss WA, Anthes RA (1987) A numerical investigation of low-level processes in rapid cyclogenesis. Mon Weather Rev 115:2728–2743. https://doi.org/10.1175/1520-0493(1987)115%3c2728:ANIOLL%3e2.0.CO;2
Osbrough SL, Frederiksen JS (2021) Interdecadal changes in Southern Hemisphere winter explosive storms and Southern Australian rainfall. Clim Dyn. https://doi.org/10.1007/s00382-021-05633-y
Pepler AS, Alexander LV, Evans JP, Sherwood SC (2017) The influence of topography on midlatitude cyclones on Australia’s east coast. J Geophys Res Atmos. https://doi.org/10.1002/2017JD027345
Pezza AB, Rashid HA, Simmonds I (2012) Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, southern annular mode and ENSO. Clim Dyn 38:57–73
Piva DE, Gan MA, de Lima Moscati MC (2011) The role of latent and sensible heat fluxes in an explosive cyclogenesis over the South American East Coast. J Meteor Soci of Japan Ser II 89:637–663. https://doi.org/10.2151/jmsj.2011-604
Reale M, Liberato MLR, Lionello P, Pinto JG, Salon S, Ulbrich S (2019) A global climatology of explosive cyclones using a multi-tracking approach. Tellus 71:1611340. https://doi.org/10.1080/16000870.2019.1611340
Reale M, Lionello P (2013) Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat Hazards Earth Syst Sci 13:1707–1722. https://doi.org/10.5194/nhess-13-1707-2013,2013
Reale M, Cabos W, Cavicchia L, Conte D, Coppola E, Flaounas E, Giorgi F, Hochman A, Li L, Lionello P, Podrascanin Z, Sanchez Gomez E, Scoccimarro E, Sein D, Somot S (2021) Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Clim Dyn, submitted
Reboita MS, Reale M, da Rocha RP, Giorgi F, Giuliani G, Coppola E, Nino RBL, Llopart M, Torres JA, Cavazos T (2020) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn. https://doi.org/10.1007/s00382-020-05317-z
Reboita MS, da Rocha RP, Ambrizzi T (2012) Dynamic and climatological features of cyclonic developments over southwestern South Atlantic Ocean. Horizons Earth Sci Res 6:135–160
Reboita MS, da Rocha RP, Ambrizzi T, Gouveia CD (2015) Trend and teleconnection patterns in the climatology of extratropical cyclones over the southern hemisphere. Clim Dyn 45:1929–1944. https://doi.org/10.1007/s00382-014-2447-3
Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn 35(7):1331–1347. https://doi.org/10.1007/s00382-009-0668-7
Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38(6):2866–2879. https://doi.org/10.1002/joc.5468
Reis PA, Aquino FE, Schossler V, Bernardo RT (2020) Tropical–Antarctic connections of an explosive cyclone in southern Brazil: rainfall stable isotope ratios and atmospheric analysis. Adv Polar Sci 31:103–111. https://doi.org/10.13679/j.advps.2019.0039
Revell MJ, Ridley RN (1995) The origin and evolution of low-level potential vorticity anomalies during a case of Tasman sea cyclogenesis. Tellus A 47:779–796. https://doi.org/10.1034/j.1600-0870.1995.00120.x
Roebber PJ (1984) Statistical analysis and updated climatology of explosive cyclones. Mon Wea Rev 112(8):1577–1589
Rogers E, Bosart LF (1991) A diagnostic study of two intense oceanic cyclones. Mon Weather Rev 119:965–996. https://doi.org/10.1175/1520-0493(1991)119%3C0965:ADSOTI%3E2.0.CO;2
Sanchez-Gomez E, Somot S (2018) Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domain. Clim Dyn 51(3):1005–1021. https://doi.org/10.1007/s00382-016-3394-y
Sanders F (1986) Explosive Cyclogenesis over the West-Central North Atlantic Ocean, 1981–84. Part II. Evaluation of LFM Model Performance. Mon Wea Rev 114:2207–2218. https://doi.org/10.1175/1520-0493(1986)114%3C2207:ECOTWC%3E2.0.CO;2
Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the bomb. Mon Weather Rev 108:1589–1606. https://doi.org/10.1175/1520-0493(1980)108%3C1589:SDCOT%3E2.0.CO;2
Schartner T, Kirchner I (2016) Eady growth rate. Available in https://freva.met.fu-berlin.de/about/eady/
Schossler V, Aquino FE, Reis A, Simões JC (2020) Antarctic atmospheric circulation anomalies and explosive cyclogenesis in the spring of 2016. Theoret Appl Climatol 141:537–549. https://doi.org/10.1007/s00704-020-03200-9
Seiler C, Zwiers FW (2016a) How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? Clim Dyn 46:1241–1256. https://doi.org/10.1007/s00382-015-2642-x
Seiler C, Zwiers FW (2016b) How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere? Clim Dyn 46:3633–3644. https://doi.org/10.1007/s00382-015-2791-y
Seiler C, Zwiers FW, Hodges KI, Scinocca J (2018) How does dy-namical downscaling affect model biases and future projections of explosive extratropical cyclones along NorthAmerica’s Atlantic coast? Clim Dyn 50:677–692. https://doi.org/10.1007/s00382-017-3634-9
Seluchi ME (1995) Diagnóstico y pronóstico de situaciones sinópticas conducentes a ciclogénesis sobre el este de Sudamérica. Geofísica Internacional 34(2):171–186
Shapiro MA, Keyser D (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO (eds.) Extratropical cyclones, the Erik Palmén memorial volume. American Meteorological Society, pp. 167–191
Sinclair MR (1995) An extended climatology of extratropical cyclones over the southern hemisphere. Weather Clim 15:21–32. https://doi.org/10.2307/44279877
Sinclair VA, Rantanen M, Haapanala P, Räisänen J, Järvinen H (2020) The characteristics and structure of extra-tropical cyclones in a warmer climate. Weather Clim Dyn 1:1–25. https://doi.org/10.5194/wcd-1-1-2020
Suzuki-Parker A (2012) Uncertainties and limitations in simulating tropical cyclones. Springer Science & Business Media, New York
Teichmann C, Jacob D, Remedio AR, Remke T, Buntemeyer L, Hoffmann P et al (2021) Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim Dyn. https://doi.org/10.1007/S00382-020-05494-x
Tonkin H, Holland GJ, Holbrook N, Henderson-Sellers A (2000) An evaluation of thermodynamic estimates of climatological maximum potential tropical cyclone intensity. Mon Weather Rev 128(3):746–762. https://doi.org/10.1175/1520-0493(2000)128%3c0746:AEOTEO%3e2.0.CO;2
Uccellini L, Kocin PJ (1987) The interaction of jet streak circulations during heavy snow events along the east coast of the United States. Weather Forecast 2:289–308
Uccellini LW (1990) Processes contributing to the rapid development of extratropical cyclones. In: Meteorological A (ed) Extratropical cyclones. Society, Boston, pp 81–105
Ulbrich U, Leckebusch GC, Grieger J, Schuster M, Akperov M, Bardin MY et al (2013) Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteorol Z 22(1):61–68
Vera CS, Vigliarolo PK, Berbery EH (2002) Cold season synoptic-scale waves over subtropical South America. Mon Weather Rev 130(3):684–699. https://doi.org/10.1175/1520-0493(2002)130%3c0684:CSSSWO%3e2.0.CO;2
Wang C, Liang J, Hodges KI (2017) Projections of tropical cyclones affecting Vietnam under climate change: downscaled HadGEM2-ES using PRECIS 21. Q J R Meteorol Soc 143(705):1844–1859. https://doi.org/10.1002/qj.3046
Wash CH, Halo RA, Dobos PH, Wright EJ (1992) Study of explosive and nonexplosive cyclogenesis during FGGE. Mon Weather Rev 120:40–51. https://doi.org/10.1175/1520-0493(1992)120%3C0040:SOEANC%3E2.0.CO;2
Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic storm track. J Atmos Sci 70:2234–2250. https://doi.org/10.1175/JAS-D-12-0226.1
Yettella V, Kay JE (2017) How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Clim Dyn 49:1765–1781. https://doi.org/10.1007/s00382-016-3410-2
Yoshida A, Asuma Y (2004) Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon Wea Rev 132(5):1121–1142
Zhang SQ, Fu G, Lu CG, Liu JW (2017) Characteristics of explosive cyclones over the Northern Pacific. J Appl Meteorol Climatol 56:3187–3210. https://doi.org/10.1175/JAMC-D-16-0330.1
Zhang DL, Radeva E, Gyakum J (1999) A family of frontal cyclones over the western Atlantic Ocean. Part II: parameter studies. Mon Weather Rev 127:1745–1760. https://doi.org/10.1175/1520-0493(1999)127%3C1745:AFOFCO%3E2.0.CO;2
Acknowledgements
We thank the international centers that provided data for this study. We also thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and PETROBRAS from Brazil for the financial support. M.Reale has been supported in this work by OGS and CINECA under HPC-TRES award number 2015-07 and by the project FAIRSEA (Fisheries in the Adriatic Region ‐ a Shared Ecosystem. Approach) funded by the 2014 ‐ 2020 Interreg V‐A Italy ‐ Croatia CBC Programme (Standard project ID 10046951).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Reboita, M.S., Crespo, N.M., Torres, J.A. et al. Future changes in winter explosive cyclones over the Southern Hemisphere domains from the CORDEX-CORE ensemble. Clim Dyn 57, 3303–3322 (2021). https://doi.org/10.1007/s00382-021-05867-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-021-05867-w


