Skip to main content

Advertisement

Log in

Influence of Tibetan Plateau on the North American summer monsoon precipitation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 22 July 2021

This article has been updated

Abstract

It has been well known that the uplift of the Tibetan Plateau (TP) can significantly enhance the Asian monsoon. Here, by comparing the sensitivity experiments with and without the TP, we find that the TP uplift can also increase the precipitation of the North American Summer Monsoon (NASM), with atmosphere teleconnection accounting for 6% and oceanic dynamical process accounting for another 6%. Physically, the TP uplift generates a stationary Rossby wave train traveling from the Asian continent to the North Atlantic region, resulting in an high-pressure anomaly over the tropical-subtropical North Atlantic. This high pressure system enhances the low-level easterly winds, forcing an enhanced upward motion over the North American monsoon (NAM) region and then an increase in summer precipitation there. In addition, the TP uplift enhances the Atlantic meridional overturning circulation, which reduces the meridional temperature gradient and leads to a northward shift of Hadley Cell over eastern Pacific-Atlantic section. The latter shifts the convection center northward to 10°N and further increases the NASM precipitation. The enhanced NASM precipitation can also be understood by the northward shift of Intertropical Convergence Zone. Our study implies that the changes of NAM climate can be affected by not only local process but also remote forcing, including those from Asian highland region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  • Adam O, Bischoff T, Schneider T (2016a) Seasonal and interannual variations of the energy flux equator and ITCZ Part I: Zonally averaged ITCZ position. J Clim 29(9):3219–3230

    Article  Google Scholar 

  • Adam O, Bischoff T, Schneider T (2016b) Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J Clim 29(20):7281–7293

    Article  Google Scholar 

  • Adams D, Comrie A (1997) The north American monsoon. Bull Am Meteor Soc 78(10):2197–2214

    Article  Google Scholar 

  • An Z, Kutzbach J, Prell W et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411(6833):62–66

    Article  Google Scholar 

  • Boos WR, Korty RL (2016) Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat Geosci 9(12):892–897

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463(7278):218–222

    Article  Google Scholar 

  • Bush ABG, Philander SGH (1999) The climate of the Last Glacial maximum: results from a coupled atmosphere-ocean general circulation model. J Geophys Res Atmos 104(D20):24509–24525

    Article  Google Scholar 

  • Castro CL, McKee TB Sr, Pielke RA (2001) The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J Clim 14(24):4449–4473

    Article  Google Scholar 

  • Cerling TE, Harris JM, Ambrose SH et al (1997) Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. J Hum Evolut 33(6):635–650

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 1385(6616):516–518

    Article  Google Scholar 

  • Chen J, Bordoni S (2014) Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: an energetic perspective. J Clim 27(8):3052–3072

    Article  Google Scholar 

  • Chen S, Wei K, Chen W et al (2014) Regional changes in the annual mean Hadley circulation in recent decades. J Geophys Res: Atmos 119(13):7815–7832

    Article  Google Scholar 

  • Cheng J, Hu S, Gao C et al (2020) On the discrepancies in the changes in the annual mean Hadley circulation among different regions and between CMIP5 models and reanalyses. Theoret Appl Climatol 141(3):1475–1491

    Article  Google Scholar 

  • Chiang J, Vimont D (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158

    Article  Google Scholar 

  • Chiang J, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross‐equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. Journal of Geophysical Research: Atmospheres, 107(D1): ACL 3–1-ACL 3–19.

  • Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the ‘“rich-get-richer”’ mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Cook KH (2003) Role of continents in driving the Hadley cells. J Atmos Sci 60(7):957–976

    Article  Google Scholar 

  • Cook BI, Seager R (2013) The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Geophysical Research: Atmospheres 118(4):1690–1699

    Article  Google Scholar 

  • D’Agostino R, Lionello P, Adam O et al (2017) Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century. Geophys Res Lett 44(16):8585–8591

    Article  Google Scholar 

  • Dai A, Wigley T (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27(9):1283–1286

    Article  Google Scholar 

  • de Jesús Hernández-Hernández M, Cruz JA, Castañeda-Posadas C (2020) Paleoclimatic and Vegetation Reconstruction of the Miocene Southern Mexico using Fossil Flowers. J S Am Earth Sci 104:102827

  • Duan A, Wu G (2006) Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys Res Lett 33(22)

  • Duan AM, Xiao ZX (2015) Does the Climate Warming Hiatus Exist Over the Tibetan Plateau? Sci Rep 5:13711

    Article  Google Scholar 

  • Duan A, Wu G, Liu Y et al (2012) Weather and climate effects of the Tibetan Plateau. Adv Atmos Sci 29(5):978–992

    Article  Google Scholar 

  • Fallah B, Cubasch U, Prömmel K et al (2016) A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Clim Dyn 47(5):1485–1495

    Article  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670

    Article  Google Scholar 

  • Higgins RW, Yao Y, Wang XL (1997) Influence of the North American monsoon system on the US summer precipitation regime. J Clim 10(10):2600–2622

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hu Q, Jiang DB, Fan GZ (2015) Climate change projection on the Tibetan Plateau: Results of CMIP5 models [in Chinese]. Chin J Atmos Sci 39:260–270

    Google Scholar 

  • Hu S, Cheng J, Chou J (2017) Novel three-pattern decomposition of global atmospheric circulation: generalization of traditional two-dimensional decomposition. Clim Dyn 49(9):3573–3586

    Article  Google Scholar 

  • Hu S, Chou J, Cheng J (2018) Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems. Clim Dyn 50(7):2355–2368

    Article  Google Scholar 

  • Huber M, Goldner A (2012) Eocene monsoons. J Asian Earth Sci 44:3–23

    Article  Google Scholar 

  • Iqbal MJ, Rehman SU, Hameed S et al (2019) Changes in Hadley circulation: the Azores high and winter precipitation over tropical northeast Africa. Theor Appl Climatol 137(3):2941–2948

    Article  Google Scholar 

  • Jiang D, Ding Z, Drange H et al (2008) Sensitivity of East Asian climate to the progressive uplift and expansion of the Tibetan Plateau under the mid-Pliocene boundary conditions. Adv Atmos Sci 25(5):709–722

    Article  Google Scholar 

  • Julian PR, Chervin RM (1978) A study of the Southern Oscillation and Walker Circulation phenomenon. Mon Weather Rev 106:1433–1451

    Article  Google Scholar 

  • Kroon D, Steens T, Troelstra SR (1991) Onset of the monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifera. In: Prell WL et al (eds) Proceedings of the Ocean Drilling Program, Scientific results, Volume 117: College Station, Texas, Ocean Drilling Program, pp 257–263

  • Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628

    Article  Google Scholar 

  • Lintner BR, Boos WR (2019) Using atmospheric energy transport to quantitatively constrain South Pacific convergence zone shifts during ENSO. J Clim 32(6):1839–1855

    Article  Google Scholar 

  • Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 183(3–4):223–245

    Article  Google Scholar 

  • Liu B, Zhou T (2017) Atmospheric footprint of the recent warming slowdown. Sci Rep 7(1):1–7

    Google Scholar 

  • Liu F, Chai J, Wang B et al (2016) Global monsoon precipitation responses to large volcanic eruptions. Sci Rep 6(1):1–11

    Google Scholar 

  • Lu M, Yang S, Li Z et al (2018) Possible effect of the Tibetan Plateau on the “upstream” climate over west Asia, North Africa, south Europe and the North Atlantic. Clim Dyn 51(4):1485–1498

    Article  Google Scholar 

  • Mamalakis A, Randerson JT, Yu JY et al (2021) Zonally contrasting shifts of the tropical rain belt in response to climate change. Nat Clim Chang 1–9

  • Molnar P, Boos W, Battisti D (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38(1):77–102

    Article  Google Scholar 

  • Nan SL, Zhao P, Yang S (2009) Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST. J Geophys Res 114:D10104

    Article  Google Scholar 

  • Park HS, Chiang JC, Bordoni S (2012) The mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J Clim 25(7):2394–2407

    Article  Google Scholar 

  • Parsons LA, Yin J, Overpeck JT et al (2014) Influence of the Atlantic Meridional Overturning Circulation on the monsoon rainfall and carbon balance of the American tropics. Geophys Res Lett 41(1):146–151

    Article  Google Scholar 

  • Pascale S, Bordoni S, Kapnick SB, Vecchi GA et al (2016) The impact of horizontal resolution on North American Monsoon Gulf of California moisture surges in a suite of coupled global climate models. J Clim 29(21):7911–7936

    Article  Google Scholar 

  • Pascale S, Boos WR, Bordoni S et al (2017) Weakening of the North American monsoon with global warming. Nat Clim Chang 7(11):806–812

    Article  Google Scholar 

  • Pascale S, Carvalho LMV, Adams DK et al (2019) Current and future variations of the monsoons of the Americas in a warming climate. Curr Clim Chang Rep 5(3):125–144

    Article  Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360(6405):647–652

    Article  Google Scholar 

  • Qiao S, Zou M, Tang S et al (2020) The enhancement of the impact of the wintertime North Atlantic Oscillation on the subsequent sea surface temperature over the tropical Atlantic since the middle 1990s. J Clim 33(22):9653–9672

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342(6246):163–166

    Article  Google Scholar 

  • Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55

    Article  Google Scholar 

  • Su B, Jiang D, Zhang R et al (2018) Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau. Clim past 14(6):751–762

    Article  Google Scholar 

  • Tang H, Micheels A, Eronen JT et al (2013) Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim Dyn 40(5):1531–1549

    Article  Google Scholar 

  • Trenberth KE, Solomon A (1994) The global heat balance: Heat transports in the atmosphere and ocean. Clim Dyn 10(3):107–134

    Article  Google Scholar 

  • Varuolo-Clarke AM, Reed KA, Medeiros B (2019) Characterizing the North American monsoon in the community atmosphere model: sensitivity to resolution and topography. J Clim 32(23):8355–8372

    Article  Google Scholar 

  • Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44(3–4):165–183

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B et al (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14)

  • Wang B, Liu J, Kim HJ et al (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39(5):1123–1135

    Article  Google Scholar 

  • Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Chang 4:201–205

    Article  Google Scholar 

  • Wang Z, Yang S, Duan A et al (2019) Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan. Clim Dyn 52(9):6121–6130

    Article  Google Scholar 

  • Wang B, Biasutti M, Byrne MP et al (2021) Monsoons climate change assessment. Bull Am Meteorol Soc 102(1):E1–E19

    Article  Google Scholar 

  • Webster PJ, Magana VO et al (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Wen Q, Yang H (2020) Investigating the role of the Tibetan Plateau in the formation of Pacific meridional overturning circulation. J Clim 33(9):3603–3617

    Article  Google Scholar 

  • Wen Q, Yao J, Döös K et al (2018) Decoding hosing and heating effects on global temperature and meridional circulations in a warming climate. J Clim 31(23):9605–9623

    Article  Google Scholar 

  • Wen Q, Döös K, Lu Z et al (2020) Investigating the role of the Tibetan Plateau in ENSO Variability. J Clim 33(11):4835–4852

    Article  Google Scholar 

  • Wu G, Liu Y, Dong B et al (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn 39(5):1169–1181

    Article  Google Scholar 

  • Xie SP, Deser C, Vecchi GA et al (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23(4):966–986

    Article  Google Scholar 

  • Yang H, Wen Q (2020) Investigating the role of the Tibetan Plateau in the formation of Atlantic meridional overturning circulation. J Clim 33(9):3585–3601

    Article  Google Scholar 

  • Yang H, Li Q, Wang K et al (2015) Decomposing the meridional heat transport in the climate system. Clim Dyn 44(9–10):2751–2768

    Article  Google Scholar 

  • Yang H, Wen Q, Yao J et al (2017) Bjerknes compensation in meridional heat transport under freshwater forcing and the role of climate feedback. J Clim 30(14):5167–5185

    Article  Google Scholar 

  • Yang H, Shen X, Yao J et al (2020) Portraying the impact of the Tibetan Plateau on global climate. J Clim 33(9):3565–3583

    Article  Google Scholar 

  • Zhang KX, Wang GC, Ji JL et al (2010) Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci China Earth Sci 53(9):1271–1294

    Article  Google Scholar 

  • Zhang RH, Su FG, Jiang ZH, Gao XJ, Guo DL, Ni J, You QL, Lan C, Zhou BT (2015) An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century [in Chinese]. Chin Sci Bull 60:3036–3047

    Google Scholar 

  • Zhang W, Zhou T, Zhang L (2017) Wetting and greening Tibetan Plateau in early summer in recent decades. J Geophys Res 122:5808–5822

    Article  Google Scholar 

  • Zhao P, Zhu Y, Zhang R (2007) An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn 29:293–303

    Article  Google Scholar 

  • Zhao P, Yang S, Wu R, Wen Z, Chen J, Wang H (2012) Asian origin of interannual variations of summer climate over the extratropical North Atlantic Ocean. J Clim 25:6594–6609

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF of China (Nos. 91737204, 41725021, 41376007, 41630527, 4201101394, 42005012, 41971108, and 91437218), the Fundamental Research Funds for the Central Universities (Nos. B210201009), and the Natural Science Foundation of Jiangsu Province (Nos. BK20201058). The experiments were performed on the supercomputers at the Chinese National Supercomputer Centre in Tianjin (Tian-He No. 1). We thank three anonymous reviewers for their efforts to substantially improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Q., Han, Z., Yang, H. et al. Influence of Tibetan Plateau on the North American summer monsoon precipitation. Clim Dyn 57, 3093–3110 (2021). https://doi.org/10.1007/s00382-021-05857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05857-y

Keywords

Navigation