Skip to main content

The role of Arctic gateways on sea ice and circulation in the Arctic and North Atlantic Oceans: a sensitivity study with an ocean-sea-ice model

Abstract

The impact of changes in volume, heat and freshwater fluxes through Arctic gateways on sea ice, circulation and fresh water and heat contents of the Arctic and North Atlantic Oceans is not fully understood. To explore the role played by each gateway, we use a regional sea-ice ocean general circulation model with a fixed atmospheric forcing. We run sensitivity simulations with combinations of Bering Strait (BS) and Canadian Arctic Archipelago (CAA) open and closed inspired by paleogeography of the Arctic. We show that fluxes through BS influence the Arctic, Atlantic and Nordic Seas while the impact of the CAA is more dominant in the Nordic Seas. In the experiments with BS closed, there is a change in the surface circulation of the Arctic with a weakening of the Beaufort Gyre by about thirty percent. As a consequence, the Siberian river discharge is spread offshore to the west, rather than being directly advected away by the Transpolar Drift. This results in a decrease of salinity in the upper 50 m across much of the central Arctic and East Siberian and Chukchi Seas. We also find an increase in stratification between the surface and subsurface layers after closure of BS. Moreover, closure of the BS results in an upward shift of the relatively warm waters lying between 50 and 120 m, as well as a reorganization of heat storage and transport. Consequently, more heat is kept in the upper layers of the Arctic Ocean, thus increasing the heat content in the upper 50 m and leading to a thinner sea ice cover. The CAA closing has a large impact on sea ice, temperature and salinity in the subarctic North Atlantic with opposite responses in the Greenland-Iceland-Norwegian Seas and Baffin Bay. It is also found that CAA being open or closed strongly controls the sea ice export through the Fram Strait. In all our experiments, the changes in temperature and salinity of the Barents and Kara Seas, and in fluxes through Barents Sea Opening are relatively small, suggesting that they are likely controlled by the atmospheric processes. Our results demonstrate the need to take into consideration the fluxes through the Arctic gateways when addressing the ocean and climate changes during deglaciations as well as for predictions of future climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aksenov Y, Bacon S, Coward AC, Holliday NP (2010) Polar outflow from the Arctic Ocean: a high resolution model study. J Mar Syst 83:14–37

    Google Scholar 

  2. Aksenov Y, Karcher M, Proshutinsky A, Gerdes R, de Cuevas B, Golubeva E, Kauker F et al (2016) Arctic pathways of Pacific Water: Arctic Ocean model intercomparison experiments. J Geophys Res 121:27–59. https://doi.org/10.1002/2015JC011299

    Article  Google Scholar 

  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063

    Article  Google Scholar 

  4. Barnier B, Brodeau L, Le Sommer L, Molines J-M, Penduff T, Theetten S, Treguier A-M et al (2007) Eddy-permitting Ocean circulation hindcasts over past decades. Clivar Exchanges 42:8–10

    Google Scholar 

  5. Barnier B, Dussin R, Molines J-M (2012) Definition of the interannual experiment ORCA025.L75-GRD100, 1958–2010, MEOM-LEGI-CNRS, LEGI-DRA-12-04-2012. https://www.drakkar-ocean.eu/publications/reports/orca025-grd100-report-dussin

  6. Belkin IM, Levitus S, Antonov J, Malmberg S-A (1998) ‘Great Salinity Anomalies’ in the North Atlantic. Prog Oceanogr 41:1–68

    Google Scholar 

  7. Bouillon S, Morales-Maqueda M, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Model. https://doi.org/10.1016/j.ocemod.2009.01.004

    Article  Google Scholar 

  8. Carmack E, Winsor P, Williams W (2015) The contiguous panarctic riverine coastal domain: a unifying concept. Prog Oceanogr 139:13–23. https://doi.org/10.1016/j.pocean/2015.07.014

    Article  Google Scholar 

  9. Chanut J, Barnier B, Large W, Debreu L, Penduff T, Molines JM, Mathiot P (2008) Mesoscale Eddies in the Labrador Sea and their contribution to convection and restratification. J Phys Oceanogr 38:1617–1643

    Google Scholar 

  10. Clark P, Marshall S, Clarke G, Hostetler S, Licciardi J, Teller J (2001) Freshwater forcing of abrupt climate change during the last glaciation. Science 293:283–287

    Google Scholar 

  11. Clark J, Mitrovica JX, Alder J (2014) Regional variability in Latest Pleistocene and Holocene Sea-Level Rise Across the California-Oregon-Washington and Bering Sea Continental Shelves. In: Stanford DJ, Stegner AT (eds) Pre-Clovis in the Americas. International science conference proceedings, Smithsonian Institution, pp 49–62

  12. Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25:1176–1193

    Google Scholar 

  13. Courtois P, Hu X, Pennelly C, Spence P, Myers PG (2017) Mixed layer depth calculation in deep convection regions in ocean numerical models. Ocean Model 120:60–78. https://doi.org/10.1016/j.ocemod.2017.10.007

    Article  Google Scholar 

  14. Cuny J, Rhines P, Kwok R (2005) Davis strait volume, freshwater and heat fluxes. Deep-Sea Res 52:519–542

    Google Scholar 

  15. Curry B, Lee CM, Petrie B (2011) Volume, freshwater and heat fluxes through Davis Strait, 2004–05. J Phys Oceanogr 41:429–436

    Google Scholar 

  16. Curry B, Lee C, Petrie B, Moritz R, Kwok R (2014) Multiyear volume, liquid freshwater and sea ice transports through Davis Strait, 2004–10. J Phys Oceanogr 44:1244–1266

    Google Scholar 

  17. Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–687

    Google Scholar 

  18. Dai A, Qian T, Trenberth KE, Millman JD (2009) Changes in continental freshwater discharge from 1948–2004. J Clim 22:2773–2791

    Google Scholar 

  19. De Boer AM, Gavilan Pascual-Ahuir E, Stevens DP, Chafik L, Hutchinson DK, Zhang Q et al (2018) Interconnectivity between volume transports through Arctic straits. J Geophys Rese Oceans 123:8714–8729. https://doi.org/10.1029/2018JC014320

    Article  Google Scholar 

  20. de Vernal A, Hillaire-Marcel C (2006) Provincialism in trends and high frequency changes in the Northwest North Atlantic during the holocene. Glob Planet Change 54:263–290

    Google Scholar 

  21. de Steur L, Hansen E, Gerdes R, Karcher M, Fahrbach E, Holfort J (2009) Freshwater fluxes in the east greenland current: a decade of observations. Geophys Res Lett. https://doi.org/10.1029/2009GL041278

    Article  Google Scholar 

  22. de Vernal A, Bilodeau G, Hillaire-Marcel C, Kassou N (1992) Quantitative assessment of carbonate dissolution in marine sediments from Foraminifer Linings Vs. Shell Ratios: example from Davis Strait, NW North Atlantic. Geology 20:527–530

    Google Scholar 

  23. de Vernal A, Eynaud F, Henry M, Hillaire-Marcel C, Londeix L, Mangin S, Matthiessen J et al (2005a) Reconstruction of sea-surface conditions at middle to high latitudes of the northern hemisphere during the last glacial maximum (LGM) based on dinoflagellate cyst assemblages. Quat Sci Rev 24:897–924

    Google Scholar 

  24. de Vernal A, Hillaire-Marcel C, Darby D (2005b) Variability of sea ice cover in the Chukchi Sea (Western Arctic Ocean) during the holocene. Paleoceanography 20:PA4018. https://doi.org/10.1029/2005PA001157

    Article  Google Scholar 

  25. de Vernal A, Hillaire-Marcel C, Rochon A, Frechette B, Henry M, Solignac S, Bonnet S (2013) Dinocyst-based reconstructions of sea ice cover concentration during the holocene in the Arctic Ocean, the Northern North Atlantic Ocean and its adjacent seas. Quat Sci Rev 79:111–121

    Google Scholar 

  26. de Vernal A, Hillaire-Marcel C, Le Duc C, Roberge P, Brice C, Matthiessen J, Spielhagen RF, Stein R (2020) Natural variability of the Arctic Ocean sea ice during the present interglacial. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2008996117

    Article  Google Scholar 

  27. Dewey S, Morison J, Kwok R, Dickinson S, Morison D, Andersen R (2018) Arctic ice-ocean coupling and gyre equilibration observed with remote sensing. Geophys Res Lett 45(3):1499–1508. https://doi.org/10.1002/2017GL076229

    Article  Google Scholar 

  28. Dmitrenko IA, Kirillov SA, Tremblay LB, Bauch D, Holemann JA, Krumpen T, Kassens H, Wegner C, Heinemann G, Schroder D (2010) Impact of the Arctic Ocean Atlantic water layer on Siberian Shelf hydrography. J Geophys Res. https://doi.org/10.1029/2009JC006020

    Article  Google Scholar 

  29. Dyke AS (2004) An outline of North American deglaciation with emphasis on Central and Northern Canada. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology, vol 2b. Elsevier, pp 373–424

    Google Scholar 

  30. Eldevik T, Nilsen JEO (2013) The Arctic–Atlantic thermohaline circulation. J Clim 26:8698–8705

    Google Scholar 

  31. Elias SA, Short SK, Nelson CH, Birks HH (1996) Life and times of the Bering Land Bridge. Nature 382:60–63. https://doi.org/10.1038/382060a0

    Article  Google Scholar 

  32. England J, Atkinseon N, Bednarski J, Dyke AS, Hodgson DA, Cofaigh CO (2006) The innuitian ice sheet: configuration, dynamics and chronology. Quat Sci Rev 25:689–703. https://doi.org/10.1016/j.quascirev.2005.08.007

    Article  Google Scholar 

  33. Farmer J, Cronin T, de Vernal A, Dwyer G, Keigwin L, Thunell R (2011) Western Arctic ocean temperature variability during the last 8000 years. Geophys Res Lett. https://doi.org/10.1029/2011GL049714

    Article  Google Scholar 

  34. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Google Scholar 

  35. Fratantoni P, McCartney M (2010) Freshwater export from the labrador current to the North Atlantic current at the tail of the grand banks of newfoundland. Deep-Sea Res 57:258–283

    Google Scholar 

  36. Fuentes-Franco R, Koenigk T (2019) Sensitivity of the Arctic freshwater content and transport to model resolution. Clim Dyn 53:1765–1781. https://doi.org/10.1007/s00382-019-04735-y

    Article  Google Scholar 

  37. Gibb O, Steinhauer S, Frechette B, de Vernal A, Hillaire-Marcel C (2015) Diachronous evolution of sea surface conditions in the Labrador Sea and Baffin Bay since the last deglaciation. Holocene 25:1882–1897

    Google Scholar 

  38. Giles KA, Laxon SW, Ridout AL, Wingham DJ, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat Geosci 5(3):194–197. https://doi.org/10.1038/NGEO1379

    Article  Google Scholar 

  39. Gong D, Pickart R (2015) Summertime circulation in the Eastern Chukchi Sea. Deep-Sea Res 118:18–31. https://doi.org/10.1016/j.dsr2.2015.02.006

    Article  Google Scholar 

  40. Graham RW, Belmecheria S, Choy K et al (2016) Timing and causes of mid-Holocene mammoth extinction on St Paul Island, Alaska. Proc Natl Acad Sci 113(33):9310–9314. https://doi.org/10.1073/pnas.1604903113

    Article  Google Scholar 

  41. Griffies SM, Biastoch A, Böning CB, Bryan F, Danabasoglu G et al (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model V26(1–2):1–46. https://doi.org/10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  42. Grivault N, Hu X, Myers PG (2017) Evolution of Baffin Bay water masses and transports in a numerical sensitivity experiment under enhanced Greenland melt. Atmos Ocean 55:169–194. https://doi.org/10.1080/07055900.2017.1333950

    Article  Google Scholar 

  43. Haine TWN, Curry B, Gerdes R, Hansen E, Karcher M, Lee C, Rudels B et al (2015) Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Change 125:13–35. https://doi.org/10.1016/j.gloplacha.2014.11.013

    Article  Google Scholar 

  44. Hillaire-Marcel C, de Vernal A, Polyak L, Darby D (2004) Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments—implications for the Holocene paleoceanography of the Western Arctic. Quat Sci Rev 23:245–260

    Google Scholar 

  45. Hu X, Myers PG (2013) A Lagrangian view of Pacific water inflow pathways in the Arctic Ocean during model spin-up. Ocean Model 71:66–80. https://doi.org/10.1016/j.ocemod.2013.06.007

    Article  Google Scholar 

  46. Hu X, Myers PG, Lu Y (2019) Pacific Water pathway in the Arctic Ocean and Beaufort Gyre in two simulations with different horizontal resolutions. J Geophys Res: Oceans 124:6414–6432. https://doi.org/10.1029/2019JC015111

    Article  Google Scholar 

  47. Hu A, Meehl GA, Otto-Bliesner BL, Waelbroeck C, Han W, Loutre M-F, Lambeck K, Mitrovica JX, Rosenblom N (2010) Influence of Bering strait flow and North Atlantic circulation on glacial sea level changes. Nat Geosci 3:118–121. https://doi.org/10.1038/NGEO729

    Article  Google Scholar 

  48. Hu A, Meehl GA, Han W, Otto-Bliestner B, Abe-Ouchi A (2015) Effects of the bering strait closure on AMOC and global climate under different background climates. Prog Oceanogr 132:174–196. https://doi.org/10.1016/j.pocean.2014.02.004

    Article  Google Scholar 

  49. Hughes A, Gyllencreutz R, Lohne O, Mangerud J, Svendsen J (2016) The Last Eurasian Ice sheets—a chronological database and time-slice reconstruction. Boreas 45:1–45

    Google Scholar 

  50. Hunke EC (2001) Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J Comput Phys 170:18–38. https://doi.org/10.1006/jcph.2001.6710

    Article  Google Scholar 

  51. Ilicak M, Drange H, Wang Q, Gerdes R, Aksenov Y, Bailey D, Bentsen M, Biastoch A, Bozec A, Böning C, Cassou C, Chassignet E, Coward AC, Curry B, Danabasoglu G, Danilov S, Fernandez E, Fogli PG, Fujii Y, Griffies SM, Iovino D, Jahn A, Jung T, Large WG, Lee C, Lique C, Jianhua L, Simona Masina AJ, Nurser G, Roth C, David Salas Y, Mlia BL, Samuels PS, Tsujino H, Valcke S, Voldoire A, Wang X, Yeager SG (2016) An assessment of the arctic ocean in a suite of interannual core-II simulations. Part III: Hydrography and fluxes. Ocean Modell 100:141–161. https://doi.org/10.1016/j.ocemod.2016.02.004

    Article  Google Scholar 

  52. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley O (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC

    Google Scholar 

  53. Jahn A, Tremblay LB, Newton R, Holland MM, Mysak LA, Dmitrenko IA (2010) A tracer study of the Arctic Ocean’s liquid freshwater export variability. J Geophys Res 115:C07015. https://doi.org/10.1029/2009JC005873

    Article  Google Scholar 

  54. Jakobsson M, Pearce C, Cronin T, Backman J, Anderson L, Barrientos N, Bjork G et al (2017) Post-glacial flooding of the Bering Land bridge dated to 11 Cal Ka BP based on new geophysical and sediment records. Clim past 13:991–1005. https://doi.org/10.5194/cp-13-991-2017

    Article  Google Scholar 

  55. Jennings AE, Sheldon C, Cronin TM, Francus P, Stoner J, Andrews J (2011) The Holocene history of Nares Strait: transition from Glacial Bay to Arctic-Atlantic Throughflow. Oceanography 24:26–41

    Google Scholar 

  56. Joyce TM, Proshutinsky A (2007) Greenland’s Island rule and the Arctic Ocean circulation. J Mar Res 65:639–653

    Google Scholar 

  57. Khan NS, Ashe E, Shaw TA et al (2015) Curr Clim Change Rep 1:247. https://doi.org/10.1007/s40641-015-0029-z

    Article  Google Scholar 

  58. Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2007) Arctic freshwater export in the 20th and 21st centuries. J Geophys Res 112:G04S41. https://doi.org/10.1029/2006JG000274

    Article  Google Scholar 

  59. Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res 113:C08010. https://doi.org/10.1029/2008JC004753

    Article  Google Scholar 

  60. Labrador Sea Group (1998) The Labrador Sea deep convection experiment. Bull Am Meteorol Soc 79:2033–2058

    Google Scholar 

  61. Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research

  62. Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40:732–737. https://doi.org/10.1002/grl.50193

    Article  Google Scholar 

  63. Ledu D, Rochon A, de Vernal A, St-Onge G (2010) Holocene paleoceanography of the northwest passage, Canadian Arctic Archipelago. Quat Sci Rev 29:3468–3488

    Google Scholar 

  64. Levac E, de Vernal A, Blake W Jr (2001) Holocene paleoceanography of the northernmost Baffin Bay: palynological evidence. J Quat Sci 16:353–363

    Google Scholar 

  65. Madec G, the NEMO Team (2008) NEMO Ocean Engine. Notes de Pole de modelisation, 27, ISSN No 1288-1619. Institut Pierre-Simon Palace (IPSL)

  66. Manley W (2002) Postglacial flooding of the Bering Land bridge: a geospatial animation. INSTAAR. University of Colorado

    Google Scholar 

  67. Marzocchi A, Hirschi J, Holliday N, Cunningham S, Blaker A, Coward A (2015) The North Atlantic subpolar circulation in an eddy-resolving global ocean model. J Mar Syst 142:126–143. https://doi.org/10.1016/j.marsys.2014.10.007

    Article  Google Scholar 

  68. Meneghello G, Marshall J, Timmermans ML, Scott J (2018a) Observations of seasonal upwelling and downwelling in the Beaufort Sea mediated by sea ice. J Phys Oceanogr 48(4):795–805. https://doi.org/10.1175/JPO-D-17-0188.1

    Article  Google Scholar 

  69. Meneghello G, Marshall J, Campin J-M, Doddridge E, Timmermans M (2018b) The ice-ocean governor: ice-ocean stress feedback limits Beaufort gyre spin-up. Geophys Res Lett 45:11293–11299. https://doi.org/10.1029/2018GL080171

    Article  Google Scholar 

  70. Mix A, Bard E, Schneider R (2001) Environmental processes of the ice age: land, ocean, glaciers (EPILOG). Quat Sci Rev 20:627–657

    Google Scholar 

  71. Münchow A, Falkner KK, Melling H (2015) Baffin Island and West Greenland current systems in Northern Baffin Bay. Prog Oceanogr 132:305–317. https://doi.org/10.1016/j.pocean.2014.04.001

    Article  Google Scholar 

  72. Myers PG (2005) Impact of freshwater from the Canadian Arctic Archipelago on Labrador sea water formation. Geophys Res Lett. https://doi.org/10.1029/2004GL022082

    Article  Google Scholar 

  73. Myers PG, Donnelly C, Ribergaard MH (2009) Structure and variability of the West Greenland current in summer derived from 6 repeat standard sections. Prog Oceanogr 80:93–112. https://doi.org/10.1017/j.pocean.2008.12.003

    Article  Google Scholar 

  74. Norgaard-Pedersen N, Spielhagen R, Erlenkeuser H, Grootes P, Heinemeier J, Knies J (2003) Arctic Ocean during the last glacial maximum: Atlantic and Polar domains of surface water mass distribution and ice cover. Paleoceanography 18:3. https://doi.org/10.1029/2002PA000781

    Article  Google Scholar 

  75. Ortiz J, Polyak L, Grebmeier J, Darby D, Eberl D, Naidu S, Nof D (2009) Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-ray diffraction analysis. Glob Planet Change 68:73–84

    Google Scholar 

  76. Otto-Bliesner BL, Jahn A, Feng R, Brady EC, Hu A, Lofverstrom M (2017) Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways. Geophys Res Lett 44:957–964. https://doi.org/10.1012/2016GL071805

    Article  Google Scholar 

  77. Parkinson CL, Cavalieri DJ (2008) Arctic Sea ice variability and trends, 1979–2006. J Geophys Res 113:C07003

    Google Scholar 

  78. Peterson I, Hamilton J, Prinsenberg S, Pettipas R (2012) Wind-forcing of volume transport through lancaster sound. J Geophys Res 117:C11018. https://doi.org/10.1029/2012JC/008140

    Article  Google Scholar 

  79. Pienkowski A, England J, Furze M, Marret F, Eynaud F, Vilks G, MacLean B, Blasco S, Scourse J (2012) The deglacial to postglacial marine environments of SE Barrow Strait, Canadian Arctic Archipelago. Boreas 41:141–179. https://doi.org/10.1111/j.1502-3885.2011.00227.x

    Article  Google Scholar 

  80. Pietschnig M, Mayer M, Tsubouchi T, Storto A, Stichelberger S, Haimberger L (2017) Volume and temperature transports through the main Arctic gateways: a comparative study between an ocean reanalysis and mooring-derived data. Ocean Sci Discuss. https://doi.org/10.5194/os-2017-98

  81. Proshutinsky A, Bourke R, McLaughlin F (2002) The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales. Geophys Res Lett. https://doi.org/10.1029/2002GL015847

    Article  Google Scholar 

  82. Proshutinsky A, Krishfield R, Timmermans M-L, Toole J, Carmack E, McLaughlin F, Williams W, Zimmermann S, Ioth M, Shimada K (2009) Beaufort gyre freshwater reservoir: state and variability from observations. J Geophys Res. https://doi.org/10.1029/2008JC005104

    Article  Google Scholar 

  83. Rabe B, Schauer U, Mackensen A, Karcher M, Hansen E, Beszczynska-Moller A (2009) Freshwater components and transports in the fram strait: recent observations and changes since the late 1990s. Ocean Sci 5:219–233. https://doi.org/10.5194/os-5-219-2009

    Article  Google Scholar 

  84. Rattan S, Myers PG, Treguier AM, Theetten S, Biastoch A, Boning C (2010) Towards an understanding of Labrador Sea salinity drift in eddy-permitting simulations. Ocean Model 35:77–88

    Google Scholar 

  85. Rudels B, Marnela M, Eriksson P (2008) Constraints on estimating mass, heat and freshwater transports in the Arctic ocean: an exercise. In: Bob D, Jens M, Peter R (eds) Arctic–Subarctic ocean fluxes: defining the role of the northern seas in climate. Springer, pp 315–341

    Google Scholar 

  86. Schauer U, Beszczynska-Moller A, Walczowski W, Fahrback E, Piechura J, Hansen E (2008) Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson B, Meincke J, Rhines P (eds) Arctic-Subarctic Ocean Fluxes: defining the role of the northern seas in climate. Springer, pp 65–85

    Google Scholar 

  87. Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111:C11010. https://doi.org/10.1029/2005JC003424

    Article  Google Scholar 

  88. Skagseth I, Furevik T, Ingvaldsen R, Loeng H, Mork KA, Orvik KA, Ozhigin V (2008) Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Sea. In: Bob D, Jens M, Peter R (eds) Arctic–subarctic ocean fluxes: defining the role of the northern seas in climate. Springer, pp 45–64

    Google Scholar 

  89. Smedsrud LH, Ingvaldsen R, Nilsen JEO, Skagseth O (2010) Heat in the Barents Sea: transport, storage and surface fluxes. Ocean Sci 6:219–234. https://doi.org/10.5194/os-6-219-2010

    Article  Google Scholar 

  90. Smedsrud L, Esau I, Ingvaldsen R, Eldevik T, Haugan P, Li C, Lien S et al (2013) The role of the Barents sea in the Arctic climate system. Rev Geophys 51:415–449. https://doi.org/10.1002/rog.20017

    Article  Google Scholar 

  91. Solignac S, Giraudeau J, de Vernal A (2006) Holocene sea-surface conditions in the western Nordic Seas: spatial and temporal heterogeneities. Paleoceanography 21:PA2004. https://doi.org/10.1029/2005PA001175

    Article  Google Scholar 

  92. Spall M (2020) Potential vorticity dynamics of the Arctic Halocline. J Phys Oceanogr 50(9), 2491–2506. https://journals.ametsoc.org/view/journals/phoc/50/9/jpoD200056.xml

  93. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087

    Google Scholar 

  94. Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S-I (2017) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci 32:362–379

    Google Scholar 

  95. Strokes R, Clark C (2001) Paleo-ice streams. Quat Sci Rev. https://doi.org/10.1016/S02777-3791

    Article  Google Scholar 

  96. Sutherland D, Robert P (2008) The East Greenland coastal current: structure, variability and forcing. Prog Oceanogr 78:20

    Google Scholar 

  97. Tang C, Ross C, Yao T, Petrie B, DeTracey B, Dunlap E (2004) The circulation, water masses and circulation of Baffin Bay. Prog Oceanogr 63:183–228

    Google Scholar 

  98. Tarasov L, Peltier W (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature. https://doi.org/10.1038/nature03617

    Article  Google Scholar 

  99. Tilling RL, Ridout A, Shepherd A (2018) Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv Sp Res 62(6):1203–1225. https://doi.org/10.1016/j.asr.2017.10.051

    Article  Google Scholar 

  100. Timmermans M-L, Marshall J (2020) Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J Geophys Res Oceans 125:e2018JC014378. https://doi.org/10.1029/2018JC014378

    Article  Google Scholar 

  101. Vancoppenolle M, Fichefet T, Goose H, Bouillon S, Madec G, Morales Maqueda MA (2009) Simulating the mass balance and salinity of Arctic and Antarctic Sea Ice. 1. Model description and validation. Ocean Model 27:33–53. https://doi.org/10.1016/j.ocemod.2008.10.005

    Article  Google Scholar 

  102. Vaughan D, Comiso J, Allison I, Carrasco J, Kaser G, Kwok R, Mote P et al (2013) Observations: cryosphere. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley O (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC

    Google Scholar 

  103. Wadley M, Bigg G (2002) Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic Circulation: an ocean modelling study. QJ R Meteorol Soc 128:2187–2203

    Google Scholar 

  104. Waelbroeck C, Paul A, Kucera M, Rosell-Mele A, Weinelt M, Schneider R, Mix A et al (2009) Constraints on the magnitude and patterns of ocean cooling at the last glacial maximum. Nat Geosci 2:127–132

    Google Scholar 

  105. Wang Q, Ilicak M, Gerdes R, Drange H, Akesenov Y, Bailey DA, Bentsen M et al (2016a) An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: sea ice and solid freshwater. Ocean Model 99:110–132. https://doi.org/10.1016/j.ocemod.2015.12.008

    Article  Google Scholar 

  106. Wang Q, Ilicak M, Gerdes R, Drange H, Akesenov Y, Bailey DA, Bentsen M et al (2016b) An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Liquid freshwater. Ocean Model 99:86–109. https://doi.org/10.1016/j.ocemod.2015.12.009

    Article  Google Scholar 

  107. Wekerle C, Wang Q, Danilov S, Jung T, Schroter J (2013) The Canadian Arctic Archipelago throughflow in a multiresolution global model: model assessment and the driving mechanism of itnerannual variability. J Geophys Res 118:4525–4541. https://doi.org/10.1002/jgrc.20330

    Article  Google Scholar 

  108. Woodgate RA, Aagaard K, Weingartner TJ (2005) Monthly temperature, salinity and transport variability of the bering strait through flow. Geophys Res Lett 32:L04601. https://doi.org/10.1029/2004GL021880

    Article  Google Scholar 

  109. Woodgate RA, Weingartner T, Lindsay R (2010) The 2007 Bering Strait ocean heat flux and anomalous Arctic Sea-Ice retreat. Geophys Res Lett 37:L01602. https://doi.org/10.1029/2009GL041621

    Article  Google Scholar 

  110. Woodgate RA, Weingartner TJ, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean Water column. Geophys Res Lett 39:L24603. https://doi.org/10.1029/2012GL054092

    Article  Google Scholar 

  111. Yamamoto M, Nam S-I, Polyak L, Kobayashi D, Suzuki K, Irino T, Shimada K (2017) Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea. Clim past 13:1111–1127. https://doi.org/10.5194/cp-13-1111-2017

    Article  Google Scholar 

  112. Yang J (2005) The Arctic and sub-arctic ocean flux of potential vorticity and the Arctic ocean circulation. J Phys Oceanogr 35:2387–2407

    Google Scholar 

  113. Yang Q, Dixon TH, Myers PG, Bonin J, Chambers D, van den Broeke MR, Ribergaard MH, Mortensen J (2015) Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Commun Nat. https://doi.org/10.1038/ncomms10525

    Article  Google Scholar 

  114. Zhang Y, Chen C, Beardsley RC, Gao G, Lai Z, Curry B, Lee CM, Lin H, Qi J, Xu Q (2016) Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings: results from AO-FVCOM. J Geophys Res 121:4392–4415. https://doi.org/10.1002/2016JC011634

    Article  Google Scholar 

  115. Zhong W, Zhao J, Shi J, Cao T (2015) The Beaufort Gyre variation and its impacts on the Canada Basin in 2002–2012. Acta Oceanol Sin 34:19–31. https://doi.org/10.1007/s13131-015-0657-0

    Article  Google Scholar 

  116. Zhong W, Steele M, Zhang J, Zhao J (2018) Greater role of geostrophic currents in Ekman dynamics in the Western Arctic ocean as a mechanism for Beaufort Gyre Stabilization. J Geophys Res Oceans 123(1):149–165. https://doi.org/10.1002/2017JC013282

    Article  Google Scholar 

  117. Zreda M, England J, Phillips F, Elmore D, Sharma P (1999) Unblocking of Nares strait by Greenland and Ellesmere ice-sheet retreat 10000 years ago. Nature 398:139–142. https://doi.org/10.1038/18197

    Article  Google Scholar 

Download references

Acknowledgements

This work is an ArcTrain contribution. It was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Grants awarded to PGM (RGPIN 227438-09, RGPIN 04357 and RGPCC 433898) and ADV (38340 and 432295) and by the Fonds de Recherche du Québec-Nature et Technologies (FRQNT). We are grateful to the NEMO development team and the Drakkar project for providing the model and continuous guidance. This work could not have been possible without the computational resources provided by Westgrid and Compute Canada, where the model simulations were run and are archived (www.computecanada.ca). We thank NCAR/UCAR for making Dai and Trenberth Global River Flow and Continental Discharge Dataset available. We acknowledge WCRP/CLIVAR Ocean Model Development Panel (OMDP) for sponsoring and organizing the Coordinated Ocean-sea ice Reference Experiments dataset (CORE). The GLORYS reanalysis project is carried out in the framework of the European Copernicus Marine Environment Monitoring Service (CMEMS). For details of model simulations, visit http://knossos.eas.ualberta.ca/anha/. This work is a contribution to NSF Grant 1504023, 1504358 awarded to A. Jahn, M. Holland and LBT. We thank the reviewers for their constructive comments and Dr. Tim Kruschke for his help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Pasha Karami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Strength of Beaufort Gyre

Appendix: Strength of Beaufort Gyre

From a theoretical point of view, the influx of PV through the BS has the largest share in the PV budget of the Arctic as it is a shallow gateway (Yang 2005). Since the wind field is unchanged, the change in the potential vorticity balance is the main factor changing the strength of Beaufort Gyre. The advection of potential vorticity is a function of torque due to the joint effect of density and topographic gradients (JEBAR effect) and the torques exerted by the wind and bottom stresses. By applying this theory to our model analysis, we find that since those terms for wind and bottom stresses are kept unchanged in our sensitivity experiments, closing BS and the associated change in the density field is responsible for the change in the advection of PV, and thus the change in the Beaufort Gyre. It should be noted that the resolution of our model (Fig. 1) is slightly coarser than the Rossby radius of deformation in the Arctic (ranging between 2 and 15 km; Timmermans and Marshall 2020), and therefore, our model is not eddy resolving and might not be fully compatible with the mentioned theory (Figs.

Fig. 10
figure10

Temperature difference (annually averaged model top 50 m) with the control (present-day) experiment a closed-BS-CAA; b closed-BS; and c closed-CAA

10,

Fig. 11
figure11

Salinity difference (annually averaged model top 50 m) with the control (present-day) experiment a closed-BS-CAA; b closed-BS; and c closed-CAA

11,

Fig. 12
figure12

The density difference across 50 m, in kg m−3, over years 51–60 of integration, to show the upper ocean stratification: a present day; b closed-BS-CAA; c closed-BS; and d closed-CAA. Note that the regions shallower than 50 m (in the Arctic Ocean and Baltic Sea) were masked in white

12).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karami, M.P., Myers, P.G., de Vernal, A. et al. The role of Arctic gateways on sea ice and circulation in the Arctic and North Atlantic Oceans: a sensitivity study with an ocean-sea-ice model. Clim Dyn 57, 2129–2151 (2021). https://doi.org/10.1007/s00382-021-05798-6

Download citation