Skip to main content

Testing the performance of dendroclimatic process-based models at global scale with the PAGES2k tree-ring width database

Abstract

Tree-rings are one of the most commonly used proxies for reconstructing past climates at annual resolution. The climate information is generally deduced from tree-rings using statistical relationships, but the assumed linearity and stationarity may be inadequate. Process-based models allow for non-stationarity and non-linearity; however, many challenges are associated with their application for global scale reconstructions. In this study, we aim to test the feasibility of using the mechanistic model MAIDEN at the global scale for paleoclimate reconstructions based on data assimilation by applying it to the PAGES2k tree-ring width database. We also compare its performance with the simpler model VS-Lite, often used in global applications. Both models are skillful in terms of calibration and verification correlations for a similar number of sites (63 and 64 for VS-Lite and MAIDEN, respectively). VS-Lite tends to perform better for sites where the climate signal in tree-rings is strong and clear. By contrast, MAIDEN’s performance is likely mostly limited by the lack of data (for example, daily Gross Primary Production data or phenological timings) needed to accurately calibrate the model. However, when the calibration is robust, both models reproduce well the observed link between climate and tree-growth. In general, VS-Lite tends to overestimate the climate signal in tree-rings compared to MAIDEN, which better reproduces the magnitude of the climate signal on average. Our results show that both models are complementary and can be applied at the global scale to reconstruct past climates using an adequate protocol designed to exploit existing tree-ring data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acevedo W, Fallah B, Reich S, Cubasch U (2017) Assimilation of pseudo-Tree-ring-width observations into an atmospheric general circulation model. Clim Past 13(5):545–557. https://doi.org/10.5194/cp-13-545-2017

    Article  Google Scholar 

  2. Anchukaitis KJ, Wilson R, Briffa KR, Büntgen U, Cook ER, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson BE, Hegerl G, Helama S, Klesse S, Krusic PJ, Linderholm HW, Myglan V, Osborn TJ, Zhang P, Rydval M, Schneider L, Schurer A, Wiles G, Zorita E (2017) Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat Sci Rev 163:1–22. https://doi.org/10.1016/j.quascirev.2017.02.020

    Article  Google Scholar 

  3. Anderson DM, Tardif R, Horlick K, Erb MP, Hakim GJ, Noone D, Perkins WA, Steig E (2019) Additions to the last millennium reanalysis multi-proxy database. Data Sci J 18(1):2. https://doi.org/10.5334/dsj-2019-002

    Article  Google Scholar 

  4. Babst F, Bodesheim P, Charney N, Friend AD, Girardin MP, Klesse S, Moore DJ, Seftigen K, Björklund J, Bouriaud O, Dawson A, DeRose RJ, Dietze MC, Eckes AH, Enquist B, Frank DC, Mahecha MD, Poulter B, Record S, Trouet V, Turton RH, Zhang Z, Evans ME (2018) When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat Sci Rev 197:1–20. https://doi.org/10.1016/j.quascirev.2018.07.009

    Article  Google Scholar 

  5. Boucher E, Guiot J, Hatté C, Daux V, Danis PA, Dussouillez P (2014) An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO\(_2\) concentrations. Biogeosciences 11(12):3245–3258. https://doi.org/10.5194/bg-11-3245-2014

    Article  Google Scholar 

  6. Breitenmoser P, Brönnimann S, Frank D (2014) Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim Past 10(2):437–449. https://doi.org/10.5194/cp-10-437-2014

    Article  Google Scholar 

  7. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H (1998) Trees tell of past climates: but are they speaking less clearly today? Philos Trans R Soci Lond Ser B Biol Sci 353(1365):65–73. https://doi.org/10.1098/rstb.1998.0191

    Article  Google Scholar 

  8. Cook ER, Kairiukstis L (1990) Methods of dendrochronology: applications in the Environmental Sciences. Kluwer Academic, Boston. https://doi.org/10.1016/0048-9697(91)90076-q

    Book  Google Scholar 

  9. Danis PA, Hatté C, Misson L, Guiot J (2012) MAIDENiso: a multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes. Can J Forest Res 42(9):1697–1713. https://doi.org/10.1139/x2012-089

    Article  Google Scholar 

  10. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “divergence problem” in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60(3–4):289–305. https://doi.org/10.1016/j.gloplacha.2007.03.004

    Article  Google Scholar 

  11. Dee SG, Steiger NJ, Emile-Geay J, Hakim GJ (2016) On the utility of proxy system models for estimating climate states over common era. J Adv Model Earth Syst 8:1164–1179. https://doi.org/10.1002/2016MS000677

    Article  Google Scholar 

  12. Drew DM, Downes GM, Battaglia M (2010) CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J Theoret Biol 264(2):395–406. https://doi.org/10.1016/j.jtbi.2010.02.013

    Article  Google Scholar 

  13. Duchesne L, Houle D, Ouimet R, Caldwell L, Gloor M, Brienen R (2019) Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-43243-1

    Article  Google Scholar 

  14. Dufrêne E, Davi H, François C, Le Maire G, Le Dantec V, Granier A (2005) Modelling carbon and water cycles in a beech forest. Part I: Model description and uncertainty analysis on modelled NEE. Ecol Model 185(2–4):407–436. https://doi.org/10.1016/j.ecolmodel.2005.01.004

    Article  Google Scholar 

  15. Esper J, George SS, Anchukaitis K, D’Arrigo R, Ljungqvist F, Luterbacher J, Schneider L, Stoffel M, Wilson R, Büntgen U (2018) Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 50:81–90. https://doi.org/10.1016/j.dendro.2018.06.001

    Article  Google Scholar 

  16. Evans MN, Tolwinski-Ward SE, Thompson DM, Anchukaitis KJ (2013) Applications of proxy system modeling in high resolution paleoclimatology. Quat Sci Rev 76:16–28. https://doi.org/10.1016/j.quascirev.2013.05.024

    Article  Google Scholar 

  17. Fang M, Li X (2019) An artificial neural networks-based tree ring width proxy system model for paleoclimate data assimilation. J Adv Model Earth Syst 11(4):892–904. https://doi.org/10.1029/2018MS001525

    Article  Google Scholar 

  18. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy; IIASA, Laxenburg, Austria

  19. Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO\(_2\) assimilation in leaves of C\(_3\) species. Planta 149(1):78–90. https://doi.org/10.1007/BF00386231

    Article  Google Scholar 

  20. Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201(4):1086–1095. https://doi.org/10.1111/nph.12614

    Article  Google Scholar 

  21. Fatichi S, Pappas C, Zscheischler J, Leuzinger S (2019) Modelling carbon sources and sinks in terrestrial vegetation. New Phytol 221(2):652–668. https://doi.org/10.1111/nph.15451

    Article  Google Scholar 

  22. Franke J, Brönnimann S, Bhend J, Brugnara Y (2017) A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations. Sci Data 4:1–19. https://doi.org/10.1038/sdata.2017.76

    Article  Google Scholar 

  23. Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  24. Fritts HC (1991) Reconstructing large-scale climatic patterns from tree-ring data: a diagnostic analysis. University of Arizona Press, Tucson, Arizona, USA

    Google Scholar 

  25. Gea-Izquierdo G, Guibal F, Joffre R, Ourcival JM, Simioni G, Guiot J (2015) Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. Biogeosciences 12(3):2745–2786. https://doi.org/10.5194/bgd-12-2745-2015

    Article  Google Scholar 

  26. Gea-Izquierdo G, Nicault A, Battipaglia G, Dorado-Liñán I, Gutiérrez E, Ribas M, Guiot J (2017) Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Glob Change Biol 23(7):2915–2927. https://doi.org/10.1111/gcb.13597

    Article  Google Scholar 

  27. Gennaretti F, Gea-Izquierdo G, Boucher E, Berninger F, Arseneault D, Guiot J (2017) Ecophysiological modeling of the climate imprint on photosynthesis and carbon allocation to the tree stem in the North American boreal forest. Biogeosciences 14:4851–4866. https://doi.org/10.5194/bg-2017-51

    Article  Google Scholar 

  28. Giguère-Croteau C, Boucher É, Bergeron Y, Girardin MP, Drobyshev I, Silva LC, Hélie JF, Garneau M (2019) North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc Natl Acad Sci USA 116(7):2749–2754. https://doi.org/10.1073/pnas.1902083116

    Article  Google Scholar 

  29. Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, De Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016) No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO\(_2\) fertilization. Proc Natl Acad Sci USA 113(52):E8406–E8414. https://doi.org/10.1073/pnas.1610156113

    Article  Google Scholar 

  30. Goosse H, Crespin E, Dubinkina S, Loutre MF, Mann ME, Renssen H, Sallaz-Damaz Y, Shindell D (2012) The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”. Clim Dyn 39(12):2847–2866. https://doi.org/10.1007/s00382-012-1297-0

    Article  Google Scholar 

  31. Guiot J, Torre F, Jolly D, Peyron O, Boreux JJ, Cheddadi R (2000) Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO\(_2\) conditions: application to glacial climate in Mediterranean region. Ecol Model 127(2–3):119–140. https://doi.org/10.1016/S0304-3800(99)00219-7

    Article  Google Scholar 

  32. Guiot J, Boucher E, Gea-Izquierdo G (2014) Process models and model-data fusion in dendroecology. Front Ecol Evol 2:1–12. https://doi.org/10.3389/fevo.2014.00052

    Article  Google Scholar 

  33. Hararuk O, Campbell EM, Antos JA, Parish R (2019) Tree rings provide no evidence of a CO\(_2\) fertilization effect in old-growth subalpine forests of western Canada. Glob Change Biol 25(4):1222–1234. https://doi.org/10.1111/gcb.14561

    Article  Google Scholar 

  34. Hartig F, Minunno F, Paul S (2019) BayesianTools: general-purpose MCMC and SMC samplers and tools for Bayesian statistics. R package version 0.1.6. https://github.com/florianhartig/BayesianTools

  35. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  36. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium. Holocene 4:455–471

    Article  Google Scholar 

  37. Jones PD, Briffa KR, Osborn TJ, Lough JM, Van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19(1):3–49. https://doi.org/10.1177/0959683608098952

    Article  Google Scholar 

  38. Konecky B, McKay N, Churakova (Sidorova) O, Comas-Bru L, Dassié E, DeLong K, Falster G, Fischer M, Jones M, Jonkers L, Kaufman D, Leduc G, Managave S, Martrat B, Opel T, Orsi A, Partin J, Sayani H, Thomas E, Thompson D, Tyler J, Abram N, Atwood A, Conroy J, Kern Z, Porter T, Stevenson S, von Gunten L (2020) The Iso2k database: a global compilation of paleo-\(\delta^{18}\rm{O}\) and \(\delta^2\rm{H}\) records to aid understanding of Common Era climate. Earth Syst Sci Data 12:2261–2288. https://doi.org/10.5194/essd-12-2261-2020

    Article  Google Scholar 

  39. Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114. https://doi.org/10.1016/j.pbi.2015.05.003

    Article  Google Scholar 

  40. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RT, Zotz G (2005) Ecology: carbon flux and growth in mature deciduous forest trees exposed to elevated CO\(_2\). Science 309(5739):1360–1362. https://doi.org/10.1126/science.1113977

    Article  Google Scholar 

  41. Lavergne A, Daux V, Villalba R, Barichivich J (2015) Temporal changes in climatic limitation of tree-growth at upper treeline forests: contrasted responses along the west-to-east humidity gradient in Northern Patagonia. Dendrochronologia 36:49–59. https://doi.org/10.1016/j.dendro.2015.09.001

    Article  Google Scholar 

  42. Lavergne A, Gennaretti F, Risi C, Daux V, Savard M, Naulier M, Villalba R, Begin C, Lavergne A, Gennaretti F, Risi C, Daux V, Boucher E, Lavergne A, Gennaretti F, Risi C, Daux V, Boucher E, Savard MM (2017) Modelling tree ring cellulose \(\delta^{18}\rm{O}\) variations in two temperature-sensitive tree species from North and South America. Clim Past 13:1515–1526. https://doi.org/10.5194/cp-13-1515-2017

    Article  Google Scholar 

  43. Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C\(_3\) plants. Plant Cell Environ 18(4):339–355. https://doi.org/10.1111/j.1365-3040.1995.tb00370.x

    Article  Google Scholar 

  44. Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014) Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol 203(1):94–109. https://doi.org/10.1111/nph.12772

    Article  Google Scholar 

  45. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium. Geophys Res Lett 26(6):759–762

    Google Scholar 

  46. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252–13257. https://doi.org/10.1073/pnas.0805721105

    Article  Google Scholar 

  47. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260. https://doi.org/10.1126/science.1166349

    Article  Google Scholar 

  48. Marchand W, Girardin MP, Hartmann H, Depardieu C, Isabel N, Gauthier S, Boucher É, Bergeron Y (2020) Strong overestimation of water-use efficiency responses to rising CO\(_2\) in tree-ring studies. Glob Change Biol 26(8):4538–4558. https://doi.org/10.1111/gcb.15166

    Article  Google Scholar 

  49. Misson L (2004) MAIDEN: a model for analyzing ecosystem processes in dendroecology. Can J Forest Res 34(4):874–887. https://doi.org/10.1139/x03-252

    Article  Google Scholar 

  50. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, USA. https://doi.org/10.1017/CBO9781107415324.018

  51. PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6(5):339–346. https://doi.org/10.1038/ngeo1797

    Article  Google Scholar 

  52. PAGES 2k Consortium (2017) A global multiproxy database for temperature reconstructions of the Common Era. Sci Data 4(170088):1–33. https://doi.org/10.1038/sdata.2017.88

    Article  Google Scholar 

  53. Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20(4):597–608. https://doi.org/10.1111/j.1466-8238.2010.00608.x

    Article  Google Scholar 

  54. Rezsöhazy J, Goosse H, Guiot J, Gennaretti F, Boucher E, André F, Jonard M (2020) Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe. Clim Past 16:1043–1059. https://doi.org/10.5194/cp-16-1043-2020

    Article  Google Scholar 

  55. Seftigen K, Frank DC, Björklund J, Babst F, Poulter B (2018) The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob Ecol Biogeogr 27(11):1352–1365. https://doi.org/10.1111/geb.12802

    Article  Google Scholar 

  56. Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111. https://doi.org/10.1175/JCLI3790.1

    Article  Google Scholar 

  57. Silva LC, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS One 5:e11543. https://doi.org/10.1371/journal.pone.0011543

    Article  Google Scholar 

  58. St George S, Esper J (2019) Concord and discord among Northern Hemisphere paleotemperature reconstructions from tree rings. Quat Sci Rev 203(278–281):S0277379118307170

    Google Scholar 

  59. Steiger NJ, Smerdon JE (2017) A pseudoproxy assessment of data assimilation for reconstructing the atmosphere-ocean dynamics of hydroclimate extremes. Clim Past 13(10):1435–1449. https://doi.org/10.5194/cp-13-1435-2017

    Article  Google Scholar 

  60. Steiger NJ, Smerdon JE, Cook ER, Cook BI (2018) A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci Data 5:1–15. https://doi.org/10.1038/sdata.2018.86

    Article  Google Scholar 

  61. Tardif R, Hakim GJ, Perkins WA, Horlick KA, Erb MP, Emile-Geay J, Anderson DM, Steig EJ, Noone D (2019) Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Clim Past 15(4):1251–1273. https://doi.org/10.5194/cp-15-1251-2019

    Article  Google Scholar 

  62. Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36(11–12):2419–2439. https://doi.org/10.1007/s00382-010-0945-5

    Article  Google Scholar 

  63. Tolwinski-Ward SE, Anchukaitis KJ, Evans MN (2013) Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width. Clim Past 9(4):1481–1493. https://doi.org/10.5194/cp-9-1481-2013

    Article  Google Scholar 

  64. Vaganov EA, Hughes MK, Shashkin A (2006) Growth dynamics of conifer tree rings. Springer, New York

    Google Scholar 

  65. Van Der Sleen P, Groenendijk P, Vlam M, Anten NP, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2015) No growth stimulation of tropical trees by 150 years of CO\(_2\) fertilization but water-use efficiency increased. Nat Geosci 8(1):24–28. https://doi.org/10.1038/ngeo2313

    Article  Google Scholar 

  66. Wilson R, Elling W (2004) Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees Struct Funct 18(1):19–28. https://doi.org/10.1007/s00468-003-0273-z

    Article  Google Scholar 

  67. Wilson R, D’Arrigo R, Buckley B, Büntgen U, Esper J, Frank D, Luckman B, Payette S, Vose R, Youngblut D (2007) A matter of divergence: tracking recent warming at hemispheric scales using tree ring data. J Geophys Res Atmos 112(17):1–17. https://doi.org/10.1029/2006JD008318

    Article  Google Scholar 

  68. Wilson R, Anchukaitis K, Briffa KR, Büntgen U, Cook E, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson B, Hegerl G, Helama S, Klesse S, Krusic PJ, Linderholm HW, Myglan V, Osborn TJ, Rydval M, Schneider L, Schurer A, Wiles G, Zhang P, Zorita E (2016) Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat Sci Rev 134:1–18. https://doi.org/10.1016/j.quascirev.2015.12.005

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank François Klein and Marie Cavitte for their comments on the manuscript. JR is F.R.S-FNRS Research Fellow, Belgium (Grant no. 1.A841.18); FG received funding by the Quebec Ministry of forests, wildlife and parcs (MFFP; contract number 142332177-D); HG is research director at F.R.S.-FNRS, Belgium; JG is research director at CNRS, France. This publication has received partial funding from Laboratory of Excellence OT-Med (project ANR-11- LABEX-0061, A*MIDEX project 11-IDEX-0001-02). Computational resources have been provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 2.5020.11 and by the Walloon Region. We would like to deeply thank the two reviewers and the editor for the careful evaluation of our manuscript and for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeanne Rezsöhazy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2416 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezsöhazy, J., Gennaretti, F., Goosse, H. et al. Testing the performance of dendroclimatic process-based models at global scale with the PAGES2k tree-ring width database. Clim Dyn 57, 2005–2020 (2021). https://doi.org/10.1007/s00382-021-05789-7

Download citation

Keywords

  • Ecophysiological modelling
  • Proxy system models
  • Dendroclimatology
  • PAGES2k tree-ring database
  • Paleoclimate data assimilation based reconstructions