Skip to main content

A dynamical pathway bridging African biomass burning and Asian summer monsoon

Abstract

The Asian summer monsoon (ASM) affects more than one-third of the world’s population due to its close connection with floods, droughts thus water resources in densely populated Asian countries. The effects of aerosols emitted in remote regions on the ASM, in contrast to local emissions, remain largely unclear. Here we demonstrate through a hierarchy of climate models that aerosol emissions from the central African wildfires could strengthen the circulation of the ASM (South Asian Monsoon in particular), increase precipitation over South Asia and reduce precipitation immediately north and south of it. The enhanced latent heating over South Asia provides a critical positive feedback to the initial strengthening of monsoon westerlies associated with wildfire-driven anomalous Rossby wave source. The atmospheric dynamical bridge discovered here effectively connects African biomass burning with hydroclimate variability over East Asia in boreal summer and offers a new source of monsoon predictability across a range of timescales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The global fire emissions database (GFED) is available at https://daac.ornl.gov/get_data/, and output data from the model runs are archived at Georgia Tech local servers and are publically available upon request.

Code availability

All codes used to perform the analyses in this study are available on request from the corresponding author.

References

  1. Ackerman AS, Toon OB, Stevens DE et al (2000) Reduction of tropical cloudiness by soot. Science 288:7. https://doi.org/10.1126/science.288.5468.1042

    Article  Google Scholar 

  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Sci Wash 245:1227. https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  3. Amiri-Farahani A, Allen RJ, Li K et al (2020) A La Niña-like climate response to South African biomass burning aerosol in CESM simulations. J Geophys Res Atmos 125:6. https://doi.org/10.1029/2019JD031832

    Article  Google Scholar 

  4. Andreae MO (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342. https://doi.org/10.1126/science.1092779

    Article  Google Scholar 

  5. Bhalme HN, Mooley DA (1980) Large-scale droughts/floods and monsoon circulation. Mon Weather Rev 108:1197–1211. https://doi.org/10.1175/1520-0493(1980)108%3c1197:LSDAMC%3e2.0.CO;2

    Article  Google Scholar 

  6. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505. https://doi.org/10.1126/science.1204994

    Article  Google Scholar 

  7. Bollasina MA, Ming Y, Ramaswamy V (2013) Earlier onset of the Indian monsoon in the late twentieth century: the role of anthropogenic aerosols. Geophys Res Lett 40:3715–3720. https://doi.org/10.1002/grl.50719

    Article  Google Scholar 

  8. Bollasina MA, Ming Y, Ramaswamy V et al (2014) Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon. Geophys Res Lett 41:680–687. https://doi.org/10.1002/2013GL058183

    Article  Google Scholar 

  9. Bretherton CS, Park S (2009) A new moist turbulence parameterization in the Community Atmosphere Model. J Clim 22:3422–3448. https://doi.org/10.1175/2008JCLI2556.1

    Article  Google Scholar 

  10. Brown H, Liu X, Feng Y et al (2018) Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmos Chem Phys 18:17745–17768. https://doi.org/10.5194/acp-18-17745-2018

    Article  Google Scholar 

  11. Chen J, Li C, Ristovski Z et al (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034. https://doi.org/10.1016/j.scitotenv.2016.11.025

    Article  Google Scholar 

  12. Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045. https://doi.org/10.1175/JCLI3820.1

    Article  Google Scholar 

  13. Chung CE, Zhang GJ (2004) Impact of absorbing aerosol on precipitation: dynamic aspects in association with convective available potential energy and convective parameterization closure and dependence on aerosol heating profile. J Geophys Res Atmospheres 109:D22. https://doi.org/10.1029/2004JD004726

    Article  Google Scholar 

  14. Cochrane MA, Barber CP (2009) Climate change, human land use and future fires in the Amazon. Glob Change Biol 15:601–612. https://doi.org/10.1111/j.1365-2486.2008.01786.x

    Article  Google Scholar 

  15. Collier JC, Zhang GJ (2009) Aerosol direct forcing of the summer Indian monsoon as simulated by the NCAR CAM3. Clim Dyn 32:313–332. https://doi.org/10.1007/s00382-008-0464-9

    Article  Google Scholar 

  16. Cowan T, Cai W (2011) The impact of Asian and non-Asian anthropogenic aerosols on 20th century Asian summer monsoon. Geophys Res Lett 38:11. https://doi.org/10.1029/2011GL047268

    Article  Google Scholar 

  17. Finlay SE, Moffat A, Gazzard R et al (2012) Health impacts of wildfires. PLoS Curr 4. https://doi.org/10.1371/4f959951cce2c

  18. Flannigan MD, Bergeron Y, Engelmark O, Wotton BM (1998) Future wildfire in circumboreal forests in relation to global warming. J Veg Sci 9:469–476. https://doi.org/10.2307/3237261

    Article  Google Scholar 

  19. Freitas SR, Longo KM, Trentmann J, Latham D (2010) Technical note: sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag. Atmos Chem Phys 10:2. https://doi.org/10.5194/acpd-9-14713-2009

    Article  Google Scholar 

  20. Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467. https://doi.org/10.1146/annurev.earth.31.100901.141251

    Article  Google Scholar 

  21. Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res Atmos 117:D13. https://doi.org/10.1029/2012JD017508

    Article  Google Scholar 

  22. Gettelman A, Liu X, Ghan SJ et al (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J Geophys Res 115:D18. https://doi.org/10.1029/2009JD013797

    Article  Google Scholar 

  23. Ghan SJ, Liu X, Easter RC et al (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim 25:6461–6476. https://doi.org/10.1175/JCLI-D-11-00650.1

    Article  Google Scholar 

  24. Grell G, Freitas SR, Stuefer M, Fast J (2011) Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts. Atmos Chem Phys 11:5289–5303. https://doi.org/10.5194/acp-11-5289-2011

    Article  Google Scholar 

  25. Guo L, Turner AG, Highwood EJ (2016) Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM. J Clim 29:6937–6955. https://doi.org/10.1175/JCLI-D-15-0728.1

    Article  Google Scholar 

  26. Jacobson MZ (2004) The short-term cooling but long-term global warming due to biomass burning. J Clim 17:2909–2926. https://doi.org/10.1175/1520-0442(2004)017<2909:TSCBLG>2.0.CO;2

    Article  Google Scholar 

  27. Jaffe DA, Wigder NL (2012) Ozone production from wildfires: a critical review. Atmos Environ 51:1–10. https://doi.org/10.1016/j.atmosenv.2011.11.063

    Article  Google Scholar 

  28. Jiang Y, Liu X, Yang X-Q, Wang M (2013) A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos Environ 70:51–63. https://doi.org/10.1016/j.atmosenv.2012.12.039

    Article  Google Scholar 

  29. Jiang Y, Lu Z, Liu X et al (2016) Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmos Chem Phys 16:14805–14824. https://doi.org/10.5194/acp-16-14805-2016

    Article  Google Scholar 

  30. Jiang Y, Yang X-Q, Liu X et al (2020) Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks. J Clim 33:3351–3366. https://doi.org/10.1175/JCLI-D-19-0572.1

    Article  Google Scholar 

  31. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:21. https://doi.org/10.1029/2006GL027546

    Article  Google Scholar 

  32. Lau WKM, Kim K-M (2007) 3 Does aerosol weaken or strengthen the Asian monsoon? Developments in earth surface processes. Elsevier, Amsterdam, pp 13–22

    Google Scholar 

  33. Lau K-M, Kim K-M, Yang S (2000) Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J Clim 13:2461–2482. https://doi.org/10.1175/1520-0442(2000)013%3c2461:DABFCO%3e2.0.CO;2

    Article  Google Scholar 

  34. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z

    Article  Google Scholar 

  35. Lau K-M, Ramanathan V, Wu G-X et al (2008) The joint aerosol–monsoon experiment: a new challenge for monsoon climate research. Bull Am Meteorol Soc 89:369–384. https://doi.org/10.1175/BAMS-89-3-369

    Article  Google Scholar 

  36. Lehsten V, Tansey K, Balzter H et al (2009) Estimating carbon emissions from African wildfires. Biogeosciences 6:349–360. https://doi.org/10.5194/bgd-5-3091-2008

    Article  Google Scholar 

  37. Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29:611–614. https://doi.org/10.1029/2002GL014910

    Article  Google Scholar 

  38. Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing climate. For Ecol Manag 259:685–697. https://doi.org/10.1016/j.foreco.2009.09.002

    Article  Google Scholar 

  39. Liu X, Easter RC, Ghan SJ et al (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci Model Dev 5:709–739. https://doi.org/10.5194/gmd-5-709-2012

    Article  Google Scholar 

  40. Lu Z, Liu X, Zhang Z et al (2018) Biomass smoke from southern Africa can significantly enhance the brightness of stratocumulus over the southeastern Atlantic Ocean. Proc Natl Acad Sci 115:2924–2929. https://doi.org/10.1073/pnas.1713703115

    Article  Google Scholar 

  41. Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882. https://doi.org/10.1175/2007JCLI1777.1

    Article  Google Scholar 

  42. Meixner T, Wohlgemuth P (2004) Wildfire impacts on water quality. J Wildland Fire 13:27–35

    Article  Google Scholar 

  43. Menon S (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. https://doi.org/10.1126/science.1075159

    Article  Google Scholar 

  44. Ming Y, Ramaswamy V (2011) A model investigation of aerosol-induced changes in tropical circulation. J Clim 24:5125–5133. https://doi.org/10.1175/2011JCLI4108.1

    Article  Google Scholar 

  45. Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37:13. https://doi.org/10.1029/2010GL042895

    Article  Google Scholar 

  46. Ming Y, Ramaswamy V, Chen G (2011) A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J Clim 24:6077–6091. https://doi.org/10.1175/2011JCLI4111.1

    Article  Google Scholar 

  47. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: description and numerical tests. J Clim 21:3642–3659. https://doi.org/10.1175/2008JCLI2105.1

    Article  Google Scholar 

  48. Neale RB, Gettelman A, Park S et al (2010) Description of the NCAR community atmosphere model (CAM 5.0). NCAR, Boulder. NCAR/TN- 486+STR. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/

  49. Oleson KW, Bonan GB, Feddema JJ et al (2010) Technical description of an urban parameterization for the Community Land Model (CLMU). NCAR, Boulder. https://doi.org/10.5065/D6K35RM9

    Google Scholar 

  50. Park S, Bretherton CS (2009) The university of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J Clim 22:3449–3469. https://doi.org/10.1175/2008JCLI2557.1

    Article  Google Scholar 

  51. Qian Y, Leung LR, Ghan SJ, Giorgi F (2011) Regional climate effects of aerosols over China: modeling and observation. Tellus B Chem Phys Meteorol 55:914–934. https://doi.org/10.3402/tellusb.v55i4.16379

    Article  Google Scholar 

  52. Ramanathan V, Chung C, Kim D et al (2005) Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 102:5326–5333. https://doi.org/10.1073/pnas.0500656102

    Article  Google Scholar 

  53. Randerson JT, Chen Y, van der Werf GR et al (2012) Global burned area and biomass burning emissions from small fires. J Geophys Res Biogeosci 117:G4. https://doi.org/10.1029/2012JG002128

    Article  Google Scholar 

  54. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108. https://doi.org/10.1029/1999GL006066

    Article  Google Scholar 

  55. Rosenfeld D, Lohmann U, Raga GB et al (2008) Flood or drought: How do aerosols affect precipitation? Science 321:1309–1313. https://doi.org/10.1126/science.1160606

    Article  Google Scholar 

  56. Running SW (2006) Is global warming causing more, larger wildfires? Science 313:927–928. https://doi.org/10.1126/science.1130370

    Article  Google Scholar 

  57. Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33:283–301. https://doi.org/10.1023/B:NHAZ.0000037035.65105.95

    Article  Google Scholar 

  58. Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251. https://doi.org/10.1175/1520-0469(1988)045%3c1228:TGOGRF%3e2.0.CO;2

    Article  Google Scholar 

  59. Solmon F, Nair VS, Mallet M (2015) Increasing Arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15:8051–8064. https://doi.org/10.5194/acp-15-8051-2015

    Article  Google Scholar 

  60. Song F, Zhou T, Qian Y (2014) Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys Res Lett 41:596–603. https://doi.org/10.1002/2013GL058705

    Article  Google Scholar 

  61. Spracklen DV, Logan JA, Mickley LJ et al (2007) Wildfires drive interannual variability of organic carbon aerosol in the western U.S. in summer. Geophys Res Lett 34:16. https://doi.org/10.1029/2007GL030037

    Article  Google Scholar 

  62. Spracklen DV, Mickley LJ, Logan JA et al (2009) Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J Geophys Res 114:D20. https://doi.org/10.1029/2008JD010966

    Article  Google Scholar 

  63. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric for Meteorol 107:255–278. https://doi.org/10.1016/S0168-1923(00)00241-0

    Article  Google Scholar 

  64. Thornhill GD, Ryder CL, Highwood EJ et al (2018) The effect of South American biomass burning aerosol emissions on the regional climate. Atmos Chem Phys 18:5321–5342. https://doi.org/10.5194/acp-18-5321-2018

    Article  Google Scholar 

  65. Tosca MG, Randerson JT, Zender CS (2013) Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmos Chem Phys 13:5227–5241. https://doi.org/10.5194/acp-13-5227-2013

    Article  Google Scholar 

  66. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152. https://doi.org/10.1175/1520-0469(1977)034%3c1149:TIOPOT%3e2.0.CO;2

    Article  Google Scholar 

  67. Viereck LA (1973) Wildfire in the Taiga of Alaska. Quat Res 3:465–495. https://doi.org/10.1016/0033-5894(73)90009-4

    Article  Google Scholar 

  68. Vinoj V, Rasch PJ, Wang H et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7:308–313. https://doi.org/10.1038/ngeo2107

    Article  Google Scholar 

  69. Ward DS, Kloster S, Mahowald NM et al (2012) The changing radiative forcing of fires: global model estimates for past, present and future. Atmos Chem Phys 12:10857–10886. https://doi.org/10.5194/acp-12-10857-2012

    Article  Google Scholar 

  70. Webster PJ, Yang S (1992) Monsoon and Enso: selectively interactive systems. Q J R Meteorol Soc 118:877–926. https://doi.org/10.1002/qj.49711850705

    Article  Google Scholar 

  71. Webster PJ, Magaña VO, Palmer TN et al (2012) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans. https://doi.org/10.1029/97JC02719@10.1002/(ISSN)2169-9291.TOGA1

    Article  Google Scholar 

  72. Westerling AL, Gershunov A, Brown TJ et al (2003) Climate and wildfire in the western United States. Bull Am Meteorol Soc 84:595–604. https://doi.org/10.1175/BAMS-84-5-595

    Article  Google Scholar 

  73. Yoshikawa K, Bolton WR, Romanovsky VE et al (2002) Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J Geophys Res Atmos 107:D1. https://doi.org/10.1029/2001JD000438

    Article  Google Scholar 

  74. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos Ocean 33:407–446. https://doi.org/10.1080/07055900.1995.9649539

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers for their constructive review comments. Deng was in part supported by the National Science Foundation Climate and Large-Scale Dynamics (CLD) program through Grants AGS-1354402 and AGS-1445956 and by the National Oceanic and Atmospheric Administration through award NA16NWS4680013. D. Cao was supported by the Tsinghua University Initiative Scientific Research program through grant 2019Z07L01001 and by the Tsinghua University Visiting Scholar program under award number 2018113. Y. Wang, Y. Song, and T.-W. Park were supported by the National Science Foundation (NSF) through Grant 1243220. T.-W. Park was also supported by the National Research Foundation of the Korean government with the Grant number NRF-2020R1A4A3079510.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Deng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Park, TW., Song, Y. et al. A dynamical pathway bridging African biomass burning and Asian summer monsoon. Clim Dyn 57, 1993–2004 (2021). https://doi.org/10.1007/s00382-021-05788-8

Download citation

Keywords

  • Asian summer monsoon
  • African wildfires
  • Rossby wave source
  • Atmospheric dynamical bridge