Skip to main content

Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach

Abstract

A collection of 10 high-impact extreme precipitation events occurring in Southeastern South America during the warm season has been analyzed using statistical (ESD) and dynamical downscaling approaches. Regional Climate Models from the CORDEX database for the South American domain at two horizontal resolutions, 50 km and 25 km, short-term simulations at 20 km and at 4 km convective-permitting resolution and statistical downscaling techniques based on the analogue method and the generalized linear model approach were evaluated. The analysis includes observational datasets based on gridded data, station data and satellite products that allow assessing the observational uncertainty that characterizes extreme events in the region. It is found that the ability of the modelling strategies in capturing the main features of the extreme rainfall varies across the events. The higher the horizontal resolution of the models, the more intense and localized the core of the rainfall event, being the location of the exit region of the low-level jet and the low-level moisture flux convergence during the initial stages of the events the most relevant features that determine models’ ability of capturing the location and intensity of the core of the heavy rainfall. ESD models based on the generalized linear approach overestimate the spatial extension of the events and underestimate the intensity of the local maxima. Weather-like convective-permitting simulations depict an overall good performance in reproducing both the rainfall patterns and the triggering mechanisms of the extreme events as expected, given that these simulations are strongly controlled by the initial conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alexander LV (2016) Global observed long-term changes in temperature and precipitation extremes: a review of progress and limitations in IPCC assessments and beyond. Weather Clim Extremes 11(2016):4–16

    Article  Google Scholar 

  2. Araujo Palharini RS, Vila DA, Tôrres Rodrigues D, Pareja Quispe D, Cassineli Palharini R, de Siqueira RA, de Sousa Afonso JM (2020) Assessment of the extreme precipitation by satellite estimates over South America. Remote Sens 12:2085. https://doi.org/10.3390/rs12132085

    Article  Google Scholar 

  3. Ashouri H, Hsu K, Sorooshian S, Braithwait D, Knapp KR, Cecil LD, Nelson BR (2015) Pratt OP (2015) PERSIANN CDR daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96:69–83

    Article  Google Scholar 

  4. Attema JJ, Loriaux JM, Lenderink G (2014) Extreme precipitation response to climate perturbations in an atmospheric mesoscale model Environ. Res Lett 9:014003

    Article  Google Scholar 

  5. Barros VR, Doyle ME (2018) Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America. Int J Climatol. https://doi.org/10.1002/joc.5740

    Article  Google Scholar 

  6. Beck HE, Vergopolan N, Pan M, Levizzani V, van Dijk AIJM, Weedon GP, Brocca L, Pappenberger F, Huffman GJ, Wood EF (2017) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci 21:6201–6217

    Article  Google Scholar 

  7. Beck H, Wood EF, Pan M, Fisher K, Miralles DM, van Dijk AIJ, McVicar TR, Adler RF (2019) MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc 100(3):473–500

    Article  Google Scholar 

  8. Bettolli ML, Penalba OC (2018) Statistical downscaling of daily precipitation and temperatures in southern La Plata Basin. Int J Climatol 38:3705–3722. https://doi.org/10.1002/joc.5531

    Article  Google Scholar 

  9. Bettolli ML, Solman SA, da Rocha RP, Llopart M, Gutierrez JM, Fernández J, Olmo ME, Lavín-Gullón A, Chou SC, Carneiro Rodrigues D, Coppola E, Balmaceda Huarte R, Barreiro M, Blázquez J, Doyle M, Feijoó M, Huth R, Machado L, Vianna Cuadra S (2021) The CORDEX Flagship Pilot Study in Southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim Dyn 56:1589–1608. https://doi.org/10.1007/s00382-020-05549-z

    Article  Google Scholar 

  10. Blázquez J, Solman SA (2020) Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Clim Dyn 55:2089–2106. https://doi.org/10.1007/s00382-020-05370-8

    Article  Google Scholar 

  11. Cavalcanti IFA (2012) Large scale and synoptic features associated with extreme precipitation over South America: a review and case studies for the first decade of the 21st century. Atmos Res 118:27–40. https://doi.org/10.1016/j.atmosres.2012.06.012

    Article  Google Scholar 

  12. Cavazos T, Hewitson BC (2004) Performance of NCEP variables in statistical downscaling of daily precipitation. Clim Res 28:95–107

    Google Scholar 

  13. Cerón WL, Kayano MT, Andreoli RV, Avila-Diaz A, Ayes I, Freitas ED, Martins JA, Souza RAF (2020) Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmos Res. https://doi.org/10.1016/j.atmosres.2020.105299

    Article  Google Scholar 

  14. Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38:1192. https://doi.org/10.1029/2001WR000906

    Article  Google Scholar 

  15. Chen M, Shi W, Xie P, Silva VBS, Kousky VE, Higgins RW, Janowiak JE (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. https://doi.org/10.1029/2007JD009132

    Article  Google Scholar 

  16. Coppola E, Sobolowski S, Pichelli E, Raffaele F et al (2018) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn 55:3–34. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  17. Coutinho DLM, Lima KC, Santos e Silva CM, (2016) Regional climate simulations of the changes in the components of the moisture budget over South America. Int J Climatol 36:1170–1183. https://doi.org/10.1002/joc.4411

    Article  Google Scholar 

  18. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  19. Diffenbaugh NS, Pal J, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA 102:15774–15778

    Article  Google Scholar 

  20. Eden JM, Kew SF, Bellprat O, Lenderink G, Manola I, Omrani H, van Oldenborgh GL (2018) Extreme precipitation in the Netherlands: An event attribution case study. Weather Clim Extremes 21:90–101. https://doi.org/10.1016/j.wace.2018.07.003

    Article  Google Scholar 

  21. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066

    Article  Google Scholar 

  22. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, Obrien TA, Tawfk AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  23. Glazer RH, Torres-Alavez JA, Coppola E et al (2020) Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Clim Dyn. https://doi.org/10.1007/s00382-020-05439-4

    Article  Google Scholar 

  24. Gutowski JW, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  25. Haylock MR, Peterson TC, Alvez LM et al (2006) Trends in total and extreme south american rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512

    Article  Google Scholar 

  26. Hazeleger W, van den Hurk BJJM, Min E, van Oldenborgh GJ, Petersen AC, Stainforth DA, Vasileiadou E, Smith LA (2015) Tales of future weather. Nat Clim Chang 5:107–114. https://doi.org/10.1038/NCLIMATE2450

    Article  Google Scholar 

  27. Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. QJR Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  28. Hertig E, Maraun D, Bartholy J, Pongracz R, Vrac M, Mares I, Gutiérrez JM, Wibig J, Casanueva A, Soares PMM (2018) Comparison of statistical downscaling methods with respect to extreme events over Europe: validation results from the perfect predictor experiment of the COST Action VALUE. Int J Climatol 39:3846–3867. https://doi.org/10.1002/joc.5469

    Article  Google Scholar 

  29. Hibino K, Takayabu I, Wakazuki Y, Ogata T (2018) Physical responses of convective heavy rainfall to future warming condition: case study of the hiroshima event. Front Earth Sci 6:35. https://doi.org/10.3389/feart.2018.00035

    Article  Google Scholar 

  30. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The trmm multisatellite precipitation analysis (tmpa): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  31. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long–lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  32. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012a) Assessing the Transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(4):181–199

    Article  Google Scholar 

  33. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012b) Assessing the transferability of the regional climate model REMO to different COordinated regional climate down- scaling EXperiment (CORDEX) regions. Atmosphere 3:181–199. https://doi.org/10.3390/atmos3010181

    Article  Google Scholar 

  34. Janjic ZI (1994) The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945. https://doi.org/10.1175/1520-0493

    Article  Google Scholar 

  35. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, p 40

    Google Scholar 

  36. Joyce RJ, Janowiak JE, Arkin PA, Xie PP (2004) CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  37. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450

    Article  Google Scholar 

  38. Kendon EJ, Roberts N, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high resolution regional climate model. J Clim 25:5791–5806

    Article  Google Scholar 

  39. Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Cham SC, Evans JP, Fosser G, Wiliknson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98:79–93

    Article  Google Scholar 

  40. Kupiainen M, Jansson C, Samuelsson P, Jones C (2014) Rossby Centre regional atmospheric model, RCA4. Rossby Center News Letter

  41. Lenderink G, Belušić D, Fowler HJ, Kjellström E, Lind P, van Mei-jgaard E, van Ulft B, Vries H (2019) Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permit- ting climate model. Environ Res Lett 14:L074012. https://doi.org/10.1088/1748-9326/ab214a

    Article  Google Scholar 

  42. Li J, Chen H, Rong X, Su J, Xin Y (2018) How well can a climate model simulate an extreme precipitation event: a case study using the transpose-AMIP experiment. J Clim 31:6543–6556. https://doi.org/10.1175/JCLI-D-17-0801.1

    Article  Google Scholar 

  43. Li P, Guo Z, Furtado K, Chen H, Li J, Milton S, Field PR, Zhou T (2019) Prediction of heavy precipitation in the eastern China flooding events of 2016: added value of convection-permitting simulations. Q J R Meteorol Soc 145:3300–3319. https://doi.org/10.1002/qj.3621

    Article  Google Scholar 

  44. Li S, Otto FEL, Harrinton LJ, Sparrowm SN, Wallom DCH (2020) A pan-South-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5°C warming. Environ Res Lett 15:054005. https://doi.org/10.1088/1748-9326/ab50a2

    Article  Google Scholar 

  45. Lim KSS, Hong SY (2010) Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Wea Rev 138:1587–1612. https://doi.org/10.1175/2009MWR2968.1

    Article  Google Scholar 

  46. Mahoney K, Alexander MA, Thompson G, Barsugli JJ, Scott JD (2012) Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat Clim Change 2(2):125–131. https://doi.org/10.1038/NCLIMATE1344

    Article  Google Scholar 

  47. Manzanas R, Gutiérrez JM, Fernández J, van Meijgaard E, Calmanti S, Magariño ME, Cofiño AS, Herrera S (2018) Dynamical and sta- tistical downscaling of seasonal temperature forecasts in Europe: added value for user applications. Clim Serv 9:44–56

    Article  Google Scholar 

  48. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:1–34

    Article  Google Scholar 

  49. Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and foods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  50. Matsudo CM, Salio PV (2011) Severe weather reports and proximity to deep convection over Northern Argentina. Atmos Res 100:523–537

    Article  Google Scholar 

  51. Myhre G, Alterskjær K, Stjern W, Hodnebrog Ø, Marelle L, Samset BH, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A (2019) Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9:16063. https://doi.org/10.1038/s41598-019-52277-4

    Article  Google Scholar 

  52. Nguyen P, Shearer EJ, Tran H, Ombadi M, Hayatbini N, Palacios T, Huynh P, Braithwaite D, Updegraff G, Hsu K, Kuligowski B, Logan WS, Sorooshian S (2019) The CHRPS data portal, an easily accessible public repository for Persian global satellite precipitation data. Sci Data. https://doi.org/10.1038/sdata.2018.296

    Article  Google Scholar 

  53. Nychka D, Furrer R, Paige J, Sain S (2017) fields: tools for spatial data, R package version 10.3, https://github.com/NCAR/Fields, https://doi.org/10.5065/D6W957CT

  54. O’Gorman PA (2015) Precipitation extremes under climate change. Curr Clim Change Rep 1:49–59. https://doi.org/10.1007/s40641-015-0009-3

    Article  Google Scholar 

  55. Olmo M, Bettolli ML, Rusticucci M (2020) Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: spatial variability and trends over southern South America. Weather Clim Extremes 29:100267. https://doi.org/10.1016/j.wace.2020.100267

    Article  Google Scholar 

  56. Otto FEL, Philip S, Kew S, Li S, King A, Cullen H (2018) Attributing high-impact extreme events across timescales—a case study of four different types of events. Clim Change 149:399–412. https://doi.org/10.1007/s10584-018-2258-3

    Article  Google Scholar 

  57. Penalba OC, Robledo F (2010) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim Change 98(3–4):531–550

    Article  Google Scholar 

  58. Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nat Clim Change. https://doi.org/10.1038/NCLIMATE3287

    Article  Google Scholar 

  59. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects and challenges. Rev Geophys 53:323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  60. Rasera G, Anabor V, Scremin Puhales F, Piva ED (2018) Developing an MCS index using the climatology of South America. Meteorol Appl 25:394–405. https://doi.org/10.1002/met.1707

    Article  Google Scholar 

  61. Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Weather Rev 144:2351–3237

    Article  Google Scholar 

  62. Rasmussen KL, Chaplin MN, Zuluaga MD, Houze RA Jr (2016) Contribution of extreme convective storms to rainfall in South America. J of Hydrometeorol 17:353–367. https://doi.org/10.1175/JHM-D-15-0067.1

    Article  Google Scholar 

  63. Rasmussen KL, Prein AF, Rasmussen EM, Ikeda K, Liu C (2020) Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim Dyn 55:383–408. https://doi.org/10.1007/s00382-017-4000-7

    Article  Google Scholar 

  64. Rayana Santos AP, Vila DA, Tôrres Rodrigues D, Pareja Quispe D, Cassineli Palharini R, Almeida de Siqueira R, de Sousa Afonso JM (2020) Assessment of the extreme precipitation by satellite estimates over South America. Remote Sens 12:2085. https://doi.org/10.3390/rs12132085

    Article  Google Scholar 

  65. Roberts NM, Lean HW (2008) Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon Weather Rev 136:78–97. https://doi.org/10.1175/2007MWR2123

    Article  Google Scholar 

  66. Romatschke U, Houze RA Jr (2013) Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J Hydrometeorol 14:25–46

    Article  Google Scholar 

  67. Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over southeastern South America and their relation- ship with the South American low-level jet. Mon Weather Rev 135:1290–1309

    Article  Google Scholar 

  68. Salio P, Hobouchian MP, García Skabar Y, Vila DA (2015) Evaluation of High-Resolution Satellite Precipitation Estimates over South- ern South America using a Dense Rain Gauge Network. Atmos Res 163:146–161. https://doi.org/10.1016/j.atmosres.2014.11.017

    Article  Google Scholar 

  69. San Martín D, Manzanas R, Brands S, Herrera S, Gutiérrez JM (2017) Reassessing model uncertainty for regional projections of precipitation with an ensemble of statistical downscaling methods. J Clim 30:203–223. https://doi.org/10.1175/JCLI-D-16-0366.1

    Article  Google Scholar 

  70. Schaller N, Sillmann J, Müller M, Haarsma R, Hazeleger W, Hegdahl TK, Kelder T, van den Oord G, Weerts A, Whan K (2020) The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather Clim Extremes 29:100259. https://doi.org/10.1016/j.wace.2020.100259

    Article  Google Scholar 

  71. Seneviratne SI et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 109–230

    Google Scholar 

  72. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res-Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  73. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Technical Report. NCAR

  74. Skansi M et al (2013) Warming and wetting signals emerging from analysis of 363 changes in climate extreme indices over South America. Glob Planet Change 100(364):295–307

    Article  Google Scholar 

  75. Solman SA, Blázquez J (2019) Multiscale precipitation variability over South America: analysis of the added value of CORDEX RCM simulations. Clim Dyn 53:1547–1565. https://doi.org/10.1007/s00382-019-04689-1

    Article  Google Scholar 

  76. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  77. Teixeira da Silva M, Satyamurty P (2007) Dynamical and synoptic characteristics of heavy rainfall episodes in Southern Brazil. Mon Weather Rev 135:598–617. https://doi.org/10.1175/MWR3302

    Article  Google Scholar 

  78. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th Conference on weather analysis and forecasting/16th Conference on numerical weather prediction, pp 11–15

  79. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  80. Vörösmarty CJ et al (2013) Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Phil Trans R Soc A 371:20120408

    Article  Google Scholar 

  81. Xie P, Chen M, Yang S, Yatagai A, Hayasaka T, Fukushima Y, Liu C (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8:607–626. https://doi.org/10.1175/JHM583.1

    Article  Google Scholar 

  82. Zhang W, Zhou T (2019) Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J Clim 32:8465–8488. https://doi.org/10.1175/JCLI-D-18-0662.1

    Article  Google Scholar 

  83. Zipser EJ et al (2006) Where are the most intense thunderstorms on Earth? Bull Am Meteorol Soc 87:1057–1071

    Article  Google Scholar 

  84. Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by UBACYT2018 Grant 20020170100117BA and FONCYT Grant PICT2018-02496. The authors acknowledge the WCRP CORDEX initiative for making available the models outputs used in this work. We are grateful to two anonymous reviewers whose comments helped improving the manuscript.

Funding

The research has been funded by UBACYT2018 Grant 20020170100117BA and FONCYT Grant PICT2018-02496.

Author information

Affiliations

Authors

Contributions

All authors included in the authors list have contributed on different aspects of the manuscript.

Corresponding author

Correspondence to Silvina A. Solman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6654 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solman, S.A., Bettolli, M.L., Doyle, M.E. et al. Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach. Clim Dyn 57, 1241–1264 (2021). https://doi.org/10.1007/s00382-021-05770-4

Download citation

Keywords

  • Extreme precipitation events
  • Southeastern South America
  • Statistical and dynamical downscaling
  • Convective permitting simulations