Skip to main content

CWRF downscaling and understanding of China precipitation projections

Abstract

The regional Climate-Weather Research and Forecasting model (CWRF) was used to downscale the NCAR Community Climate System Model V4.0 (CCSM4) projection of China precipitation changes from the present (1974–2005) to future (2019–2050) under the high emission scenario RCP8.5. The CWRF downscaling at 30-km improved CCSM4 in capturing observed key precipitation spatiotemporal characteristics, correcting rainband dislocations, seasonal-mean biases, extreme-rainfall underestimates and rainy-day overestimates. For the future, CWRF generally reduced CCSM4 projected changes in magnitude, producing still significant increases mostly in summer for mean precipitation in the Northeast, North China and Southwest and for extreme precipitation in North China, South China and the Southwest. These regional precipitation increases were direct responses to enhanced ascending motions and moisture transports from adjacent oceans as the east Asian jet shrunk westward and the Hadley circulation widened northward under global warming. The identification of such robust physical mechanisms added confidence in the CWRF downscaled regional precipitation changes. Furthermore, the CWRF downscaling corrections were systematically carried from the present into future, accounting for projection uncertainties up to 40%. Regional biases, however, could not be simply removed from projected changes because their correspondences were strongly nonlinear, highlighting CWRF’s ability to project more reliable changes by reducing model structural uncertainties.

This is a preview of subscription content, access via your institution.

Fig. 1

adopted from Liang et al. (2019)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bao J, Feng J, Wang Y (2015) Dynamical downscaling simulation and future projection of precipitation over China. J Geophys Res 120:8227–8243. https://doi.org/10.1002/2015JD023275

    Article  Google Scholar 

  2. Bruyere CL, Monaghan AJ, Steinhoff DF, Yates D, Bruyère CL, Monaghan AJ, Steinhoff DF (2015) Bias-Corrected CMIP5 CESM Data in WRF/MPAS Intermediate File Format. NCAR Technical Note NCAR/TN-515+STR. pp 27

  3. Chen H-P (2013) Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin Sci Bull 58:1462–1472. https://doi.org/10.1007/s11434-012-5612-2

    Article  Google Scholar 

  4. Chen L, Frauenfeld OW (2014) A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J Geophys Res 119:5767–5786. https://doi.org/10.1002/2013JD021190

    Article  Google Scholar 

  5. Chen W, Jiang Z, Li L (2011) Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J Clim 24:4741–4756. https://doi.org/10.1175/2011JCLI4102.1

    Article  Google Scholar 

  6. Chen H-P, Jian-Qi S, Xiao-Li C (2013) Future changes of drought and flood events in china under a global warming scenario ocean. Sci Lett Atmos. https://doi.org/10.1080/16742834.2013.11447051

    Article  Google Scholar 

  7. Choi HI, Liang X-Z (2010) Improved terrestrial hydrologic representation in mesoscale land surface models. J Hydrometeorol 11:797–809. https://doi.org/10.1175/2010JHM1221.1

    Article  Google Scholar 

  8. Choi HI, Kumar P, Liang X-Z (2007) Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour Res. https://doi.org/10.1029/2006WR005134

    Article  Google Scholar 

  9. Choi HI, Liang X-Z, Kumar P (2013) A conjunctive surface-subsurface flow representation for mesoscale land surface models. J Hydrometeorol 14:1421–1442. https://doi.org/10.1175/JHM-D-12-0168.1

    Article  Google Scholar 

  10. Chong-Hai X, Ying X (2012) The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble ocean. Sci Lett Atmos. https://doi.org/10.1080/16742834.2012.11447042

    Article  Google Scholar 

  11. Chou M-D, Suarez M (1999) A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA Tech Memo 10460:48

    Google Scholar 

  12. Chou M, Suarez MJ, Liang X-Z, Yan MM-H (2001) A thermal infrared radiation parameterization for atmospheric studies. NASA Tech Rep 19, TM-2001–104606.

  13. CTNARCC (China’s Third National Assessment Report on Climate Change) (2015) The Third National Assessment Report on Climate Change Science, Press Beijing (in Chinese).

  14. Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang ZL (2003) The common land model. Bull Am Meteor Soc 84(8):1013–1023. https://doi.org/10.1175/BAMS-84-8-1013

    Article  Google Scholar 

  15. Dai Y, Dickinson RE, Wang YP (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17:2281–2299. https://doi.org/10.1175/1520-0442(2004)017%3c2281:ATMFCT%3e2.0.CO;2

    Article  Google Scholar 

  16. Ding Y, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-005-0125-z

    Article  Google Scholar 

  17. Ding Y, Liu Y, Liang S, Ma X, Zhang Y, Si D, Liang P, Song Y, Zhang J (2014) Interdecadal variability of the east asian winter monsoon and its possible links to global climate change. J Meteorol Res. https://doi.org/10.1007/s13351-014-4046-y

    Article  Google Scholar 

  18. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Tank Klein AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. https://doi.org/10.3354/cr019193

    Article  Google Scholar 

  19. Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. https://doi.org/10.1029/2002GL015311

    Article  Google Scholar 

  20. Gu H, Wang G, Yu Z, Mei R (2012) Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Clim Change 114:301–317. https://doi.org/10.1007/s10584-012-0411-y

    Article  Google Scholar 

  21. Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842. https://doi.org/10.1175/1520-0442(1993)006%3c1825:LVNBLD%3e2.0.CO;2

    Article  Google Scholar 

  22. Huang DQ, Zhu J, Zhang YC, Huang AN (2013) Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J Geophys Res Atmos 118:9035–9047. https://doi.org/10.1002/jgrd.50695

    Article  Google Scholar 

  23. Hui P, Tang J, Wang S, Niu X, Zong P, Dong X (2018) Climate change projections over China using regional climate models forced by two CMIP5 global models. Part II: projections of future climate. Int J Climatol 38:e78–e94. https://doi.org/10.1002/joc.5409

    Article  Google Scholar 

  24. Hunke EC, Lipscomb WH, Turner AK, Jeffery N, Elliott S (2013) CICE : the los alamos sea ice model documentation and software user ’ s manual version. 0 DRAFT LA-CC-06–012 RENEW.

  25. IPCC (2014) Climate Change 2014. Climate Change 2014: Synthesis Report.

  26. Jiang Z, Li W, Xu J, Li L (2015) Extreme precipitation indices over China in CMIP5 models. Part I: model evaluation. J Clim 28:8603–8619. https://doi.org/10.1175/JCLI-D-15-0099.1

    Article  Google Scholar 

  27. Kundzewicz ZW, Su B, Wang Y, Xia J, Huang J, Jiang T (2019) Flood risk and its reduction in China. Adv Water Resour. https://doi.org/10.1016/j.advwatres.2019.05.020

    Article  Google Scholar 

  28. Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, Hennon P (2013) Probable maximum precipitation and climate change. Geophys Res Lett. https://doi.org/10.1002/grl.50334

    Article  Google Scholar 

  29. Kunkel KE, Stevens SE, Stevens LE, Karl TR (2020) Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous United States. Geophys Res Lett. https://doi.org/10.1029/2019GL086721

    Article  Google Scholar 

  30. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst. https://doi.org/10.1029/2011ms000045

    Article  Google Scholar 

  31. Li Q, Wang T, Wang F, Liang X-Z, Zhao C, Dong L, Zhao C, Xie B (2020) Dynamical downscaling simulation of the East Asian summer monsoon in a regional climate-weather research and forecasting model. Int J Climatol. https://doi.org/10.1002/joc.6800

    Article  Google Scholar 

  32. Liang X-Z, Wang WC (1998) Associations between China monsoon rainfall and tropospheric jets. Q J R Meteorol Soc. https://doi.org/10.1256/smsqj.5520

    Article  Google Scholar 

  33. Liang X-Z, Zhang F (2013) The cloud-aerosol-radiation (CAR) ensemble modeling system. Atmos Chem Phys 13:8335–8364. https://doi.org/10.5194/acp-13-8335-2013

    Article  Google Scholar 

  34. Liang X-Z, Kunkel KE, Samel AN (2001) Development of a regional climate model for U.S. Midwest applications. Part I: sensitivity to buffer zone treatment. J Clim 14:4363–4378. https://doi.org/10.1175/1520-0442(2001)014%3c4363:DOARCM%3e2.0.CO;2

    Article  Google Scholar 

  35. Liang X-Z, Xu M, Gao W, Kunkel K, Slusser J, Dai Y, Min Q, Houser PR, Rodell M, Schaaf CB, Gao F (2005) Development of land surface albedo parameterization based on moderate resolution imaging spectroradiometer (MODIS) data. J Geophys Res D Atmos 110(11):1–22. https://doi.org/10.1029/2004JD005579

    Article  Google Scholar 

  36. Liang X-Z, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett. https://doi.org/10.1029/2007GL032849

    Article  Google Scholar 

  37. Liang X-Z, Xu M, Yuan X, Ling T, Choi HI, Zhang F, Chen L, Liu S, Su S, Qiao F, He Y, Wang JXL, Kunkel KE, Gao W, Joseph E, Morris V, Yu TW, Dudhia J, Michalakes J (2012a) Regional climate-weather research and forecasting model. Bull Am Meteor Soc 93(9):1363–1387. https://doi.org/10.1175/BAMS-D-11-00180.1

    Article  Google Scholar 

  38. Liang X-Z, Xu M, Gao W, Raja Reddy K, Kunkel K, Schmoldt DL, Samel AN (2012b) A distributed cotton growth model developed from GOSSYM and its parameter determination. Agron J 104:661–674. https://doi.org/10.2134/agronj2011.0250

    Article  Google Scholar 

  39. Liang X-Z, Sun C, Zheng X, Dai Y, Xu M, Choi HI, Ling T, Qiao F, Kong X, Bi X, Song L, Wang F (2019) CWRF performance at downscaling China climate characteristics. Clim Dyn 52(3–4):2159–2184. https://doi.org/10.1007/s00382-018-4257-5

    Article  Google Scholar 

  40. Ling T-J, Liang X-Z, Xu M, Wang Z, Wang B (2011) A multilevel ocean mixed-layer model for 2-dimension applications. Acta Oceanol Sin 33(03):1–10

    Google Scholar 

  41. Ling T, Xu M, Liang X-Z, Wang JXL, Noh Y (2015) A multilevel ocean mixed layer model resolving the diurnal cycle: Development and validation. J Adv Model Earth Syst 7:1680–1692. https://doi.org/10.1002/2015MS000476

    Article  Google Scholar 

  42. Liu S, Gao W, Liang X-Z (2013) A regional climate model downscaling projection of China future climate change. Clim. Dyn. 41:1871–1884. https://doi.org/10.1007/s00382-012-1632-5

    Article  Google Scholar 

  43. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  44. Neale RB, Chen C, Lauritzen PH, Williamson DL, Conley AJ, Smith AK, Mills M, Morrison H (2004) Description of the NCAR community atmosphere model (CAM 5.0). Ncar/Tn-464+Str, 214.

  45. Niu X, Wang S, Tang J, Lee DK, Gao X, Wu J, Hong S, Gutowski WJ, McGregor J (2015) Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J Geophys Res. https://doi.org/10.1002/2015JD023853

    Article  Google Scholar 

  46. Ou T, Chen D, Linderholm HW, Jeong JH (2013) Evaluation of global climate models in simulating extreme precipitation in China. Tellus. Ser A Dyn Meteorol Oceanogr 65:1–16. https://doi.org/10.3402/tellusa.v65i0.19799

    Article  Google Scholar 

  47. Park S, Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J Clim 22:3449–3469. https://doi.org/10.1175/2008JCLI2557.1

    Article  Google Scholar 

  48. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  Google Scholar 

  49. Qiao F, Liang X-Z (2015) Effects of cumulus parameterizations on predictions of summer flood in the Central United States. Clim Dyn 45:727–744. https://doi.org/10.1007/s00382-014-2301-7

    Article  Google Scholar 

  50. Qiao F, Liang X-Z (2016) Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J Adv Model Earth Syst 8:764–785. https://doi.org/10.1002/2015MS000621

    Article  Google Scholar 

  51. Qiao F, Liang X-Z (2017) Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Clim Dyn 49:225–247. https://doi.org/10.1007/s00382-016-3338-6

    Article  Google Scholar 

  52. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Change 109(1): 33–57. https://doi.org/10.1007/s10584-011-0149-y.

  53. Rummukainen M (2016) Added value in regional climate modeling. Wiley Interdiscip Rev Clim Chang 7:145–159. https://doi.org/10.1002/wcc.378

    Article  Google Scholar 

  54. Samel AN, Wang W-C, Liang X-Z (1999) Monsoon rainfall over China and relationships with the Eurasian circulation. J Clim 12:115–131. https://doi.org/10.1175/1520-0442-12.1.115

    Article  Google Scholar 

  55. Skamarock WC, Klemp JB, Dudhi J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Tech Rep. https://doi.org/10.5065/D6DZ069T

    Article  Google Scholar 

  56. Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J, Eden C, Fox-Kemper B, Gent P, Hecht M, Jayne S, Jochum M, Large W, Lindsay K, Maltrud M, Norton N, Peacock S, Vertenstein M, Yeager S (2010) The parallel ocean program (POP) reference manual: ocean component of the Community Climate System Model (CCSM). Rep. LAUR-01853 141:1–141

    Google Scholar 

  57. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Dyn Clim. https://doi.org/10.1007/s00382-012-1607-6

    Article  Google Scholar 

  58. Staten PW, Lu J, Grise KM, Davis SM, Birner T (2018) Re-examining tropical expansion. Nat Clim Change 8:768–775. https://doi.org/10.1038/s41558-018-0246-2

    Article  Google Scholar 

  59. Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  60. Subin ZM, Riley WJ, Mironov D (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CCSM41. J Adv Model Earth Syst. https://doi.org/10.1029/2011MS000072

    Article  Google Scholar 

  61. Sun C, Liang X-Z (2020a) Improving US extreme precipitation simulation: sensitivity to physics parameterizations. Clim Dyn 54:4891–4918. https://doi.org/10.1007/s00382-020-05267-6

    Article  Google Scholar 

  62. Sun C, Liang X-Z (2020b) Improving US extreme precipitation simulation: dependence on cumulus parameterization and underlying mechanism. Clim Dyn 55:1325–1352. https://doi.org/10.1007/s00382-020-05328-w

    Article  Google Scholar 

  63. Sun Q, Miao C, Duan Q (2016) Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. Int J Climatol 36:43–61. https://doi.org/10.1002/joc.4328

    Article  Google Scholar 

  64. Tao WK, Starr D, Hou A, Newman P, Sud Y (2003) A cumulus parameterization workshop. Bull Am Meteorol Soc 84:1055–1062. https://doi.org/10.1175/BAMS-84-8-1055

    Article  Google Scholar 

  65. Wang HJ, Sun JQ, Chen HP, Zhu YL, Zhang Y, Jiang DB, Lang XM, Fan K, Yu ET, Yang S (2012) Extreme climate in China: Facts, simulation and projection. Meteorol Z. https://doi.org/10.1127/0941-2948/2012/0330

    Article  Google Scholar 

  66. Wei K, Xu T, Du Z, Gong H, Xie B (2014) How well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon? Dyn Clim. https://doi.org/10.1007/s00382-013-1929-z

    Article  Google Scholar 

  67. Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Acta Geophys Sin 56:1102–1111. https://doi.org/10.6038/cjg20130406

    Article  Google Scholar 

  68. Wu FT, Wang SY, Fu CB, Qian Y, Gao Y, Lee DK, Cha DH, Tang JP, Hong SY (2016) Evaluation and projection of summer extreme precipitation over east Asia in the regional model inter-comparison project. Climate Res 69(1):45–58. https://doi.org/10.3354/cr01384

    Article  Google Scholar 

  69. Xu JY, Shi Y, Gao XJ, Giorgi F (2013) Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chin Sci Bull 58:1443–1452. https://doi.org/10.1007/s11434-012-5548-6

    Article  Google Scholar 

  70. Xu M, Liang X-Z, Samel A, Gao W (2014) MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. J Clim 27:8578–8596. https://doi.org/10.1175/JCLI-D-14-00082.1

    Article  Google Scholar 

  71. Xu Y, Gao X, Giorgi F, Zhou B, Shi Y, Wu J, Zhang Y (2018) Projected changes in temperature and precipitation extremes over china as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv Atmos Sci 35:376–388. https://doi.org/10.1007/s00376-017-6269-1

    Article  Google Scholar 

  72. Xue Y, Janjic Z, Dudhia J, Vasic R, De Sales F (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res Elsevier B.V. 147–148: 68–85. https://doi.org/10.1016/j.atmosres.2014.05.001.

  73. Ying X, Jie W, Ying S, Bo-Tao Z, Rou-Ke L, Jia W (2015) Change in extreme climate events over china based on CMIP5. Atmos Ocean Sci Lett 8:185–192. https://doi.org/10.3878/AOSL20150006

    Article  Google Scholar 

  74. Yu E, Sun J, Chen H, Xiang W (2015) Evaluation of a high-resolution historical simulation over China: climatology and extremes. Dyn Clim. https://doi.org/10.1007/s00382-014-2452-6

    Article  Google Scholar 

  75. Yuan X, Liang X-Z (2011) Evaluation of a conjunctive surface-subsurface process model (CSSP) over the contiguous United States at regional-local scales. J Hydrometeorol 12:579–599. https://doi.org/10.1175/2010JHM1302.1

    Article  Google Scholar 

  76. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2:851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

  77. Zhang F, Liang X-Z, Li J, Zeng Q (2013) Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J Geophys Res Atmos 118:7733–7749. https://doi.org/10.1002/jgrd.50604

    Article  Google Scholar 

  78. Zheng J, Wang WC, Ge Q, Man Z, Zhang P (2006) Precipitation variability and extreme events in eastern China during the past 1500 years. Terr Atmos Ocean Sci 17:579–592. https://doi.org/10.3319/TAO.2006.17.3.579(A)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the U.S. National Science Foundation Innovations at the Nexus of Food, Energy and Water Systems under Grant EAR1903249 and the China Meteorological Administration/National Climate Center research subcontract 2211011816501. The simulations and analyses were conducted on supercomputers, including the Maryland Advanced Research Computing Center's Bluecrab and the Computational and Information Systems Lab of the National Center for Atmospheric Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin-Zhong Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4641 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Sun, L., Sun, C. et al. CWRF downscaling and understanding of China precipitation projections. Clim Dyn 57, 1079–1096 (2021). https://doi.org/10.1007/s00382-021-05759-z

Download citation