Skip to main content

Extreme daily precipitation in southern South America: statistical characterization and circulation types using observational datasets and regional climate models

Abstract

The main features of daily extreme precipitation and circulation types in southern South America (SSA) were evaluated and compared in both multiple observational datasets (rain gauges, CHIRPS, CPC and MSWEP) and simulations from four regional climate models (RCMs) driven by ERA-Interim during 1980–2010. The inter-comparison of extreme events, characterised in terms of their intensity, frequency and spatial coverage, varied across SSA showing large differences among observational datasets and RCMs and reflecting the current observational uncertainty when evaluating precipitation extremes at a daily scale. The spread between observational datasets was smaller than for the RCMs. Most of the RCMs successfully captured the spatial pattern of extreme precipitation across SSA, although RCA4 (REMO) usually underestimated (overestimated) precipitation intensities, particularly the maximum amounts in southeastern South America (SESA), where the extremes are remarkable. The synoptic circulation was described by a classification of circulation types (CTs) using Self-Organizing Maps (SOM). Specific CTs were found to significantly enhance the occurrence of extreme precipitation events in sectorized areas of SESA. The RCMs adequately reproduced the SOM node frequencies, although they tended to simplify the predominant CTs into a more reduced number of configurations. They appropriately represented the extreme precipitation frequencies conditioned by each CT, exhibiting some limitations in the location and intensity of the resulting precipitation systems. These sorts of evaluations contribute to a better understanding of the physical mechanisms responsible for extreme precipitation and of their future projections in a climate change scenario.

This is a preview of subscription content, access via your institution.

Fig. 1

adapted from Olmo et al. (2020). The different climatic regions are Northern Chile, Central and Southern Chile, Arid Diagonal Region, Argentinian Patagonia and Southeastern South America. Atmospheric circulation was studied within the blue box

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Agel L, Barlow M, Feldstein SB, Gutowski WJ (2017) Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Dyn Clim. https://doi.org/10.1007/s00382-017-3724-8

    Article  Google Scholar 

  2. Barros V, Clarke R, Silva Dias PL (2006) Climate change in the La Plata Basin, 1st edn. CIMA-CONICET, Buenos Aires

    Google Scholar 

  3. Barrucand M, Vargas W, Bettolli ML (2014) Warm and cold dry months and associated circulation in the humid and semi-humid Argentine region. Meteorol Atmos Phys 123:143–154

    Article  Google Scholar 

  4. Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo A (2017) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-21-589-2017

    Article  Google Scholar 

  5. Berbery EH, Barros VR (2002) The hydrological cycle of the La Plata Basin in South America. J Hydrometeor 3:630–645

    Article  Google Scholar 

  6. Bettolli ML, Penalba OC (2014) Synoptic sea level pressure patterns–daily rainfall relationship over the Argentine Pampas in a multi-model simulation. Meteorol Appl 21:376–383. https://doi.org/10.1002/met.13

    Article  Google Scholar 

  7. Bettolli ML, Penalba OC, Vargas W (2010) Synoptic weather types in the south of South America and their relationship to daily rainfall in the core crop-producing region in Argentina. Aust Meteorol Oceanogr J 60:37–48. https://doi.org/10.22499/2.6001.004

    Article  Google Scholar 

  8. Bettolli ML, Solman S, da Rocha RP, Llopart M, Gutiérrez JM, Fernández J, Olmo M, Lavín-Gullón A, Chou SC, Carneiro Rodrigues D, Coppola E, Balmaceda Huarte R, Barreiro M, Blázquez J, Doyle M, Feijoó M, Huth R, Machado L, Vianna CS (2020) The CORDEX Flagship Pilot Study in Southeastern South America: a comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim Dyn 56:1589–1608

    Article  Google Scholar 

  9. Carril A, Menéndez C, Remedio ARC, Robledo F, Sörensson A, Tencer B, Boulanger JP, de Castro M, Jacob D, Le Treut H, Li LZX, Penalba O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sánchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39(12):2747–2768. https://doi.org/10.1007/s00382-012-1573-z

    Article  Google Scholar 

  10. Carril A, Cavalcanti IFA, Menéndez C, Sörensson A, de la Franca L, Arema N, Rivera J, Robledo F, Zaninelli P, Ambrizzi T, Penalba O, da Rocha RP, Sánchez E, Bettolli ML, Pessacg N, Renom M, Ruscica R, Romina C, Solman S, Tencer B, Grimm AM, Zamboni L (2016) Extreme events in La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Clim Res. https://doi.org/10.3354/cr01374

    Article  Google Scholar 

  11. Cavalcanti I (2012) Large scale and synoptic features associated with extreme precipitation over South America: a review and case studies for the first decade of the 21st century. Atmos Res 118:27–40

    Article  Google Scholar 

  12. Cavalcanti I, Carril A, Penalba O, Grimm AM, Menéndez C, Sánchez E, Cherchi A, Sörensson A, Robledo F, Rivera J, Pántano V, Bettolli ML, Zaninelli P, Zamboni L, Tedeschi R, Domínguez M, Ruscica R, Flach R (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J Hydrol 523:211–230. https://doi.org/10.1016/j.jhydrol.2015.01.028

    Article  Google Scholar 

  13. Condom T, Martínez R, Pabón JD, Costa F, Pineda L, Nieto JJ, López F, Villacis M (2020) Climatological and hydrological observations for the South American Andes: in situ stations, satellite, and reanalysis data sets. Front Earth Sci 8:92. https://doi.org/10.3389/feart.2020.00092

    Article  Google Scholar 

  14. D’onofrio A, Boulanger JP, Segura EC (2010) CHAC: a weather pattern classification system for regional climate downscaling of daily precipitation. Clim Change 98:405–427. https://doi.org/10.1007/s10584-009-9738-4

    Article  Google Scholar 

  15. da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108. https://doi.org/10.1029/2008JD010212

    Article  Google Scholar 

  16. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  17. Di Luca A, Argüeso D, Evans JP, de Elía R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res Atmos 121:1575–1590. https://doi.org/10.1002/2015JD024009

    Article  Google Scholar 

  18. Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410

    Article  Google Scholar 

  19. Du H, Alexander LV, Donat MG, Lippmann T, Srivastava A, Salinger J et al (2019) Precipitation from persistent extremes is increasing in most regions and globally. Geophys Res Lett 46:6041–6049. https://doi.org/10.1029/2019GL081898

    Article  Google Scholar 

  20. Durkee JD, Mote TL, Shepherd M (2009) The contribution of mesoscale convective complexes to rainfall across subtropical South America. J Clim 22:4590–4605. https://doi.org/10.1175/2009JCLI2858.1

    Article  Google Scholar 

  21. Espinoza JC, Ronchail J, Lengaigne M, Quispe N, Silva Y, Bettolli ML, Llacza A (2012) Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim Dyn 41:1983–2002

    Article  Google Scholar 

  22. Falco M, Carril AF, Menéndez CG, Zaninelli PG, Li LZ (2019) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn 52:4771–4786. https://doi.org/10.1007/s00382-018-4412-z

    Article  Google Scholar 

  23. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2014) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  24. Gibson PB, Perkins-Kirkpatrick SE, Renwick JA (2016) Projected changes in synoptic weather patterns over New Zealand examined through self-organizing maps. Int J Climatol 36:3934–3948. https://doi.org/10.1002/joc.4604

    Article  Google Scholar 

  25. Gibson PB, Perkins-Kirkpatrick SE, Uotila P, Pepler AS, Alexander L (2017) On the use of self-organizing maps for studying climate extremes. J Geophys Res Atmos 122:3891–3903. https://doi.org/10.1002/2016JD026256

    Article  Google Scholar 

  26. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  27. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  28. Giorgi F, Coppola E, Raffaele F, Tefera Diro G, Fuentes-Franco R, Giuliani G, Mamgain A, Llopart M, Mariotti L, Tormaand C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:39–51. https://doi.org/10.1007/s10584-014-1117-0

    Article  Google Scholar 

  29. Glisan JM, Gutowski WJ, Cassano JJ, Cassano EN, Seefeldt MW (2016) Analysis of WRF extreme daily precipitation over Alaska using self-organizing maps. J Geophys Res Atmos 121:7746–7761. https://doi.org/10.1002/2016JD024822

    Article  Google Scholar 

  30. Gutiérrez JM, Cano R, Cofiño AS, Sordo C (2005) Analysis and downscaling multi-model seasonal forecasts in Peru using self-organizing maps. Tellus A Dyn Meteorol Oceanogr 57(3):435–447. https://doi.org/10.3402/tellusa.v57i3.14672

    Article  Google Scholar 

  31. Gutiérrez JM, Maraun D, Widmann M, Huth R, Hertig E, Benestad R, Roessler O, Wibig J, Wilcke R, Kotlarski S, San Martín D, Herrera S, Bedia J, Casanueva A, Manzanas R, Iturbide M, Vrac M, Dubrovsky M, Ribalaygua J, Pórtoles J, Räty O, Räisänen J, Hingray B, Raynaud D, Casado MJ, Ramos P, Zerenner T, Turco M, Bosshard T, Štěpánek P, Bartholy J, Pongracz R, Keller DE, Fischer AM, Cardoso RM, Soares PMM, Czernecki B, Pagé C (2019) An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. Int J Climatol 39:3750–3785. https://doi.org/10.1002/joc.5462

    Article  Google Scholar 

  32. Gutowski JW, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G et al (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev. 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  33. Hewitson B (2010) Enhancing regional climate change message through assessing multi-model regional circulation changes. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi-model climate projections. IPCC Working Group I Technical Support Unit, University of Bern, Bern

    Google Scholar 

  34. Hewitson B, Crane RG (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26

    Article  Google Scholar 

  35. Huth R (2000) A circulation classification scheme applicable in GCM studies. Theor Appl Climatol 67:1–18

    Article  Google Scholar 

  36. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(4):181–199. https://doi.org/10.3390/atmos3010181

    Article  Google Scholar 

  37. Kohonen T (2001) Self-Organizing Maps. Springer, New York

    Book  Google Scholar 

  38. Kupiainen M, Jansson C, Samuelsson P, Jones C, Willén U, Hansson U, Ullerstig A, Wang S, Döscher R (2014) Rossby Centre regional atmospheric model, RCA4. Rossby Center News Letter. https://www.smhi.se/en/research/research-departments/climateresearch-rossby-centre2-552/rossby-centre-regional-atmospheric-model-rca4-1.16562

  39. Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata Basins. Clim Change 125:111–125. https://doi.org/10.1007/s10584-014-1140-1

    Article  Google Scholar 

  40. Loikith PC, Pampuch LA, Slinskey E, Detzer J, Mechoso CR (2019) A climatology of daily synoptic circulation patterns and associated surface meteorology over southern South America. Clim Dyn 53:4019–4035. https://doi.org/10.1007/s00382-019-04768-3

    Article  Google Scholar 

  41. Montecinos A, Aceituno P (2003) Seasonality of the ENSO related rainfall variability in central Chile and associated circulation anomalies. J Clim 16:281–296

    Article  Google Scholar 

  42. Olmo M, Bettolli ML, Rusticucci M (2020) Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: spatial variability and trends over southern South America. Weather Clim Extremes. https://doi.org/10.1016/j.wace.2020.100267

    Article  Google Scholar 

  43. Penalba OC, Robledo F (2010) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim Change 98(3):531–550

    Article  Google Scholar 

  44. Penalba OC, Bettolli ML, Krieger PA (2013) Surface circulation types and daily maximum and minimum temperatures in Southern La Plata Basin. J Appl Meteorol Climatol 52:2450–2459

    Article  Google Scholar 

  45. Pinto I, Jack C, Hewitson B (2018) Process-based model evaluation and projections over southern Africa from Coordinated Regional Climate Downscaling Experiment and Coupled Model Intercomparison Project Phase 5 models. Int J Climatol. https://doi.org/10.1002/joc.5666

    Article  Google Scholar 

  46. Prein AF, Gobiet A (2017) Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. J Climatol Int. https://doi.org/10.1002/joc.4706

    Article  Google Scholar 

  47. Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. World Surv Climatol 12:13–73

    Google Scholar 

  48. Quagraine KA, Hewitson B, Jack C, Wolski P, Pinto I, Lennard C (2020) Using co-behavior analysis to interrogate the performance of CMIP5 GCMs over Southern Africa. J Clim 33:2891–2905. https://doi.org/10.1175/JCLI-D-19-0472.1

    Article  Google Scholar 

  49. Quintana JM, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43° S. Atmósfera 25(1):1–12

    Google Scholar 

  50. Rasera G, Anabor V, Scremin Puhales F, Dal Piva E (2017) Developing an MCS index using the climatology of South America. Meteorol Appl 25(3):394–405. https://doi.org/10.1002/met.1707

    Article  Google Scholar 

  51. Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Weather Rev 144:2351–2374

    Article  Google Scholar 

  52. Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid D, Hoffmann P, Nam C, Kotova L, Jacob D (2019) Evaluation of new CORDEX simulations using an updated Köeppen–Trewartha climate classification. Atmosphere 10:726. https://doi.org/10.3390/atmos10110726

    Article  Google Scholar 

  53. Robledo FA, Penalba OC, Bettolli ML (2013) Teleconnections between tropical-extratropical oceans and the daily intensity of extreme rainfall over Argentina. Int J Climatol 33(3):735–745. https://doi.org/10.1002/joc.3467

    Article  Google Scholar 

  54. Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. https://doi.org/10.1002/wcc.8

    Article  Google Scholar 

  55. Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over Southeastern South America and their relationship with the South American low level jet. Mon Weather Rev 135:1290–1309. https://doi.org/10.1175/MWR3305.1

    Article  Google Scholar 

  56. Salio P, Hobouchian MP, García Skabar Y, Vila D (2015) Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos Res 163:146–161

    Article  Google Scholar 

  57. Schuenemann KC, Cassano JJ (2010) Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps. J Geophys Res 115:D05108. https://doi.org/10.1029/2009JD011706

    Article  Google Scholar 

  58. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Wang W, Powers J (2008) A description of the advanced research WRF version 3 (No. NCAR/TN-475+STR). Univ Corp Atmos Res. https://doi.org/10.5065/D68S4MVH

    Article  Google Scholar 

  59. Smith ET, Sheridan SC (2019) The influence of atmospheric circulation patterns on cold air outbreaks in the eastern United States. Int J Climatol 39:2080–2095. https://doi.org/10.1002/joc.5935

    Article  Google Scholar 

  60. Solman S (2016) Systematic temperature and precipitation biases in the CLARIS-LPB ensemble simulations over South America and possible implications for climate projections. Clim Res 68:117–1360. https://doi.org/10.3354/cr01362

    Article  Google Scholar 

  61. Solman SA, Blázquez J (2019) Multiscale precipitation variability over South America: analysis of the added value of CORDEX RCM simulations. Clim Dyn 53:1547–1565. https://doi.org/10.1007/s00382-019-04689-1

    Article  Google Scholar 

  62. Solman S, Menéndez C (2003) Weather regimes in the South American sector and neighbouring oceans during winter. Clim Dyn 21:91–104. https://doi.org/10.1007/s00382-003-0320-x

    Article  Google Scholar 

  63. Solman SA, Nuñez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533

    Article  Google Scholar 

  64. Solman S, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg N, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157. https://doi.org/10.1007/s00382-013-1667-2

    Article  Google Scholar 

  65. Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and inter-comparisons. Rev Geophys 56:79–107. https://doi.org/10.1002/2017RG000574

    Article  Google Scholar 

  66. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  67. Tencer B, Bettolli ML, Rusticucci M (2016) Compound temperature and precipitation extreme events in Southern South America: associated atmospheric circulation and simulations by a multi-RCM ensemble. Clim Res 68:183–199

    Article  Google Scholar 

  68. Vörösmarty CJ, de Guenni LB, Wolheim WM, Pellerin B, Bjerklie D, Cardoso M, D’Almeida C, Green P, Colon L (2013) Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Phil Trans R Soc A 371:20120408. https://doi.org/10.1098/rsta.2012.0408

    Article  Google Scholar 

  69. Xie P, Chen M, Shi W (2010) CPC global unified gauge-based analysis of daily precipitation. Preprints, 24th conf. on hydrology, Atlanta, GA, Amer. Meteor. Soc, p 2

  70. Zazulie N, Rusticucci M, Raga GB (2017) Regional climate of the subtropical central Andes using high-resolution CMIP5 models—part I: past performance (1980–2005). Clim Dyn 49:3937–3957. https://doi.org/10.1007/s00382-017-3560-x

    Article  Google Scholar 

  71. Zhang X, Alexander LV, Hegerl GC, Jones P et al (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2:851–870

    Article  Google Scholar 

  72. Zipser EJ, Cecil DJ, Liu C, Nesbitt S, Yorty D (2006) Where are the most intense thunderstorms on Earth? Bull Am Meteorol Soc 87:1057–1071. https://doi.org/10.1175/BAMS-87-8-1057

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Buenos Aires 2018-20020170100117BA, 20020170100357BA and the ANPCyT PICT-2018-02496 projects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. E. Olmo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olmo, M.E., Bettolli, M.L. Extreme daily precipitation in southern South America: statistical characterization and circulation types using observational datasets and regional climate models. Clim Dyn 57, 895–916 (2021). https://doi.org/10.1007/s00382-021-05748-2

Download citation

Keywords

  • Extreme rainfall
  • Observational uncertainty
  • Regional climate modeling
  • Circulation patterns
  • Southeastern South America
  • Self-organizing maps