Skip to main content

Tropical forcing of the circumglobal teleconnection pattern in boreal winter

Abstract

Recently there has been an increase in interest in hemispheric-scale teleconnections. The circumglobal teleconnection pattern (CGT) is a special zonal phase of the jet whereby disturbances originating near the South Asian jet entrance, or within the jet, remain trapped and can propagate around the globe. Recent studies have shown that this CGT pattern affects climatic conditions across the entire hemisphere, from North America to Europe to South Asia. The CGT is generally thought of as an internal mode of atmospheric variability, but this study aims to examine whether the CGT can be forced during the boreal winter when the jet is at its peak amplitude. To accomplish this, we make use of a simple general circulation model to test whether an imposed diabatic heating anomaly in the tropics can force the CGT. Results from the simple model show that heating over the equatorial Indian Ocean and cooling over the western Tropical Pacific Ocean can drive a CGT-like pattern. Lagged regression using pentad reanalysis data supports these results, showing that a dipole convection pattern in these same regions precede the CGT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Álvarez-García FJ, OrtizBevia MJ, Cabos W et al (2019) Linear and nonlinear links of winter European precipitation to Northern Hemisphere circulation patterns. Clim Dyn 52:6533–6555. https://doi.org/10.1007/s00382-018-4531-6

    Article  Google Scholar 

  2. Bader J, Latif M (2005) North Atlantic oscillation response to anomalous Indian ocean SST in a coupled GCM. J Clim 18:5382–5389. https://doi.org/10.1175/JCLI3577.1

    Article  Google Scholar 

  3. Beverley JD, Woolnough SJ, Baker LH et al (2019) The northern hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Clim Dyn 52:3759–3771. https://doi.org/10.1007/s00382-018-4371-4

    Article  Google Scholar 

  4. Branstator GW (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910. https://doi.org/10.1175/1520-0442(2002)015%3c1893:CTTJSW%3e2.0.CO;2

    Article  Google Scholar 

  5. Branstator G (2014) Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J Clim 27:8809–8826. https://doi.org/10.1175/JCLI-D-14-00312.1

    Article  Google Scholar 

  6. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  7. Chen G, Huang R (2012) Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J Clim 25:7834–7851. https://doi.org/10.1175/JCLI-D-11-00684.1

    Article  Google Scholar 

  8. Chen S, Wu R, Chen W (2015) The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J Clim 28:485–504. https://doi.org/10.1175/JCLI-D-14-00422.1

    Article  Google Scholar 

  9. Chen S, Wu R, Song L, Chen W (2019) Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Clim Dyn 53:1805–1821. https://doi.org/10.1007/s00382-019-04738-9

    Article  Google Scholar 

  10. Chen S, Wu R, Chen W, Hu K, Yu B (2020a) Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Clim Dyn 54:5111–5126. https://doi.org/10.1007/s00382-020-05274-7

    Article  Google Scholar 

  11. Chen S, Wu R, Chen W et al (2020b) Coherent interannual variations of springtime surface temperature and temperature extremes between Central-Northern Europe and Northeast Asia. J Geophys Res Atmos 125:395–410. https://doi.org/10.1029/2019JD032226

    Article  Google Scholar 

  12. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  13. Dai Y, Feldstein SB, Tan B, Lee S (2017) Formation mechanisms of the Pacific-North American teleconnection with and without its canonical tropical convection pattern. J Clim 30:3139–3155. https://doi.org/10.1175/JCLI-D-16-0411.1

    Article  Google Scholar 

  14. Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505. https://doi.org/10.1175/JCLI3473.1

    Article  Google Scholar 

  15. Ding Q, Wang B, Wallace JM, Branstator G (2011) Tropical-extratropical teleconnections in boreal summer: observed interannual variability. J Clim 24:1878–1896. https://doi.org/10.1175/2011JCLI3621.1

    Article  Google Scholar 

  16. Feldstein SB, Dayan U (2008) Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Q J R Meteorol Soc 134:455–467. https://doi.org/10.1002/qj.225

    Article  Google Scholar 

  17. García-Serrano J, Haarsma RJ (2017) Non-annular, hemispheric signature of the winter North Atlantic Oscillation. Clim Dyn 48:3659–3670. https://doi.org/10.1007/s00382-016-3292-3

    Article  Google Scholar 

  18. Hall NMJ (2000) A simple GCM based on dry dynamics and constant forcing. J Atmos Sci 57:1557–1572. https://doi.org/10.1175/1520-0469(2000)057%3c1557:ASGBOD%3e2.0.CO;2

    Article  Google Scholar 

  19. Hall NMJ, Derome J (2000) Transience, nonlinearity, and eddy feedback in the remote response to El Niño. J Atmos Sci 57:3992–4007. https://doi.org/10.1175/1520-0469(2001)058%3c3992:TNAEFI%3e2.0.CO;2

    Article  Google Scholar 

  20. Henderson SA, Maloney ED, Son SW (2017) Madden-Julian oscillation Pacific teleconnections: the impact of the basic state and MJO representation in general circulation models. J Clim 30:4567–4587. https://doi.org/10.1175/JCLI-D-16-0789.1

    Article  Google Scholar 

  21. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1671

    Article  Google Scholar 

  22. Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  23. Huang G, Liu Y, Huang R (2011) The interannual variability of summer rainfall in the arid and semiarid regions of Northern China and its association with the northern hemisphere circumglobal teleconnection. Adv Atmos Sci 28:257–268. https://doi.org/10.1007/s00376-010-9225-x

    Article  Google Scholar 

  24. Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319. https://doi.org/10.1175/1520-0469(1995)052%3c0307:TDRTTH%3e2.0.CO;2

    Article  Google Scholar 

  25. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  26. Kim MK, Oh JS, Park CK et al (2019) Possible impact of the diabatic heating over the Indian subcontinent on heat waves in South Korea. Int J Climatol 39:1166–1180. https://doi.org/10.1002/joc.5869

    Article  Google Scholar 

  27. Lee J-Y, Ha KJ (2015) Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical-extratropical teleconnection. J Clim 28:8634–8647. https://doi.org/10.1175/JCLI-D-15-0154.1

    Article  Google Scholar 

  28. Lee S, Gong T, Johnson NC et al (2011) On the possible link between tropical convection and the northern hemisphere arctic surface air temperature change between 1958 and 2001. J Clim 24:4350–4367. https://doi.org/10.1175/2011JCLI4003.1

    Article  Google Scholar 

  29. Liebmann B, Smith C (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  30. Lin H (2009) Global extratropical response to diabatic heating variability of the Asian Summer Monsoon. J Atmos Sci 66:2697–2713. https://doi.org/10.1175/2009JAS3008.1

    Article  Google Scholar 

  31. Lin H, Brunet G, Derome J (2007) Intraseasonal variability in a dry atmospheric model. J Atmos Sci 64:2422–2441. https://doi.org/10.1175/JAS3955.1

    Article  Google Scholar 

  32. Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic oscillation and the Madden–Julian oscillation. J Clim 22:364–380. https://doi.org/10.1175/2008JCLI2515.1

    Article  Google Scholar 

  33. Lin H, Brunet G, Yu B (2015) Interannual variability of the Madden-Julian Oscillation and its impact on the North Atlantic Oscillation in the boreal winter. Geophys Res Lett 42:5571–5576. https://doi.org/10.1002/2015GL064547.1

    Article  Google Scholar 

  34. Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656. https://doi.org/10.1175/2010JCLI3553.1

    Article  Google Scholar 

  35. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, Oxford

    Google Scholar 

  36. Saeed S, Almazroui M (2019) Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. Clim Dyn 53:5253–5264. https://doi.org/10.1007/s00382-019-04862-6

    Article  Google Scholar 

  37. Saeed S, Van Lipzig N, Müller WA et al (2014) Influence of the circumglobal wave-train on European summer precipitation. Clim Dyn 43:503–515. https://doi.org/10.1007/s00382-013-1871-0

    Article  Google Scholar 

  38. Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251

    Article  Google Scholar 

  39. Selten FM, Branstator GW, Dijkstra HA, Kliphuis M (2004) Tropical origins for recent and future Northern Hemisphere climate change. Geophys Res Lett 31:4–7. https://doi.org/10.1029/2004GL020739

    Article  Google Scholar 

  40. Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392. https://doi.org/10.1175/1520-0469(1983)040%3c1363:BWPAIA%3e2.0.CO;2

    Article  Google Scholar 

  41. Soulard N, Lin H, Yu B (2019) The changing relationship between ENSO and its extratropical response patterns. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-42922-3

    Article  Google Scholar 

  42. Wang H, Wang B, Huang F et al (2012) Interdecadal change of the boreal summer circumglobal teleconnection (1958–2010). Geophys Res Lett 39:1–6. https://doi.org/10.1029/2012GL052371

    Article  Google Scholar 

  43. Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17:4674–4691. https://doi.org/10.1175/JCLI-3228.1

    Article  Google Scholar 

  44. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. https://doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2

    Article  Google Scholar 

  45. Xue X, Chen W (2019) Distinguishing interannual variations and possible impacted factors for the northern and southern mode of South Asia High. Clim Dyn 53:4937–4959. https://doi.org/10.1007/s00382-019-04837-7

    Article  Google Scholar 

  46. Yang J, Liu Q, Liu Z et al (2009) Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys Res Lett 36:1–5. https://doi.org/10.1029/2009GL039559

    Article  Google Scholar 

  47. Yasui S, Watanabe M (2010) Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J Clim 23:2093–2114. https://doi.org/10.1175/2009JCLI3323.1

    Article  Google Scholar 

  48. Yu B, Lin H (2013) Tropical/extratropical forcing on wintertime variability of the extratropical temperature and circulation. Clim Dyn 40:1183–1200. https://doi.org/10.1007/s00382-012-1367-3

    Article  Google Scholar 

  49. Yu B, Lin H (2016) Tropical atmospheric forcing of the wintertime North Atlantic oscillation. J Clim 29:1755–1772. https://doi.org/10.1175/JCLI-D-15-0583.1

    Article  Google Scholar 

  50. Yu B, Lin H, Soulard N (2019) A comparison of North American surface temperature and temperature extreme anomalies in association with various atmospheric teleconnection patterns. Atmosphere (Basel) 10:172. https://doi.org/10.3390/atmos10040172

    Article  Google Scholar 

  51. Yuan J, Feldstein SB, Lee S, Tan B (2011) The relationship between the North Atlantic jet and tropical convection over the Indian and Western Pacific Oceans. J Clim. https://doi.org/10.1175/2011JCLI4203.1

    Article  Google Scholar 

  52. Zhao W, Chen S, Chen W et al (2019) Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Clim Dyn 53:2031–2046. https://doi.org/10.1007/s00382-019-04762-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Timothy Merlis for helpful discussions. This research was made possible by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to the second author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas Soulard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soulard, N., Lin, H., Derome, J. et al. Tropical forcing of the circumglobal teleconnection pattern in boreal winter. Clim Dyn 57, 865–877 (2021). https://doi.org/10.1007/s00382-021-05744-6

Download citation

Keywords

  • Circumglobal teleconnection
  • Tropical forcing
  • Climate variability
  • Teleconnections