Skip to main content

Assessing precipitation extremes (1981–2018) and deep convective activity (2002–2018) in the Amazon region with CHIRPS and AMSU data

Abstract

The frequency and spatial distributions of precipitation extremes (PEs) and deep convective clouds (DCC) across the Amazon region were assessed using satellite-derived data. For PEs, CHIRPS dataset for the period 1981–2018 were used to calculate a set of absolute, threshold, duration, and percentile-based threshold indices defined by the Expert Team on Climate Change Detection and Indices. DCC occurrence was assessed based on the Advanced Microwave Sounding Unit data for the period 2002–2018. In northern Amazon (north of \(5^\circ \hbox {S}\)) PEs and DCC are more frequent (\(\ge 60\%\) frequency) during February–June. Averaged trends over these months have shown increase in daily rainfall above 20 mm of near 3  days over the 1981–2018 period, and an increase of 2 consecutive wet days (P \(\ge 1\,\hbox {mm}\)) in the same period. South of \(5^\circ \hbox {S}\) prevalence of PEs and DCC is largely observed during November–March (\(\ge 60\%\) frequency), whereas the longest persistence of dry days is observed during June–August. Though all PE trends point to an intensification of rainfall in November–March, only consecutive dry days in winter (JJA) and spring (SON) show significant trends, pointing to an increase of 7 days over the 38-yr winters. Rainfall extremes over the entire Amazon region were found to be moderate to strongly correlated with the mean vertically integrated moisture divergence, and in southern Amazon also to upper level divergence and upward vertical velocity. Increased frequency of DCC were found over the whole basin (\(\sim 18\% \,\, \hbox {yr}^{-1}\)), in contrast to decreased convective overshooting (up to \(\sim 15.4\% \,\, \hbox {yr}^{-1}\)).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Availability of data and material

CHIRPS v2 is available at https://www.chc.ucsb.edu/data/chirps. AMSU data is available through the Comprehensive Large Array-data Stewardship System (CLASS; https://www.class.noaa.gov).

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  2. Ambrizzi T, Ferraz SET (2015) An objective criterion for determining the South Atlantic convergence zone. Front Environ Sci 3:23. https://doi.org/10.3389/fenvs.2015.00023

    Article  Google Scholar 

  3. Andreoli RV, Ferreira de Souza RA, Kayano MT, Candido LA (2012) Seasonal anomalous rainfall in the central and eastern Amazon and associated anomalous oceanic and atmospheric patterns. Int J Climatol 32(8):1193–1205. https://doi.org/10.1002/joc.2345

    Article  Google Scholar 

  4. Arias P, Fu R, Vera C, Rojas M (2015) A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim Dyn 45:3183–3203. https://doi.org/10.1007/s00382-015-2533-1

    Article  Google Scholar 

  5. Arvor D, Meirelles M, Dubreuil V, Bégué A, Shimabukuro YE (2012) Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Appl Geogr 32(2):702–713

    Article  Google Scholar 

  6. Arvor D, Dubreuil V, Ronchail J, Simões M, Funatsu B (2014) Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int J Climatol 34:2622–2633. https://doi.org/10.1002/joc.3863

    Article  Google Scholar 

  7. Arvor D, Funatsu BM, Michot V, Dubreuil V (2017) Monitoring rainfall patterns in the Southern Amazon with PERSIANN-CDR data: long-term characteristics and trends. Remote Sens 9:889. https://doi.org/10.3390/rs9090889

    Article  Google Scholar 

  8. Arvor D, Daher F, Briand D, Dufour S, Rollet AJ, Simões M, Ferraz R (2018) Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series. ISPRS J Photogramm Remote Sens. https://doi.org/10.1016/j.isprsjprs.2018.03.015

    Article  Google Scholar 

  9. Bagley JE, Desai AR, Harding K, Snyder PK, Foley JA (2013) Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon? J Clim 27:345–361. https://doi.org/10.1175/CLI-D-12-00369.1

    Article  Google Scholar 

  10. Baker JCA, Spracklen DV (2019) Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front For Glob Change 2:47. https://doi.org/10.3389/ffgc.2019.00047

    Article  Google Scholar 

  11. Barichivich J, Gloor E, Peylin P, Brienen RJW, Schöngart J, Espinoza JC, Pattnayak KC (2018) Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci Adv 4(9):eaat8785. https://doi.org/10.1126/sciadv.aat8785

    Article  Google Scholar 

  12. Boisier JP, Ciais P, Ducharne A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Change 5:656–660. https://doi.org/10.1038/nclimate2658

    Article  Google Scholar 

  13. Caioni C, Silvério DV, Macedo MN, Coe MT, Brando PM (2020) Droughts amplify differences between the energy balance components of Amazon forests and croplands. Remote Sens. https://doi.org/10.3390/rs12030525

    Article  Google Scholar 

  14. Callède J, Guyot JL, Ronchail J, L’Hôte Y, Niel H, de Oliveira E (2004) Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999. Hydrol Sci J 49(1):85–97. https://doi.org/10.1623/hysj.49.1.85.53992

    Article  Google Scholar 

  15. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

    Article  Google Scholar 

  16. Carvalho LMV, Jones C, Silva AE, Liebmann B, Silva Dias PL (2011) The South American Monsoon System and the 1970s climate transition. Int J Climatol 31(8):1248–1256. https://doi.org/10.1002/joc.2147

    Article  Google Scholar 

  17. Cavalcante RBL, da Silva Ferreira DB, Pontes PRM, Tedeschi RG, da Costa CPW, de Souza EB (2020) Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmos Res 238:104879. https://doi.org/10.1016/j.atmosres.2020.104879

    Article  Google Scholar 

  18. Chavez SP, Takahashi K (2017) Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J Geophys Res Atmos 122(11):5870–5882. https://doi.org/10.1002/2016JD026282

    Article  Google Scholar 

  19. Claud C, Alhammoud B, Funatsu BM, Lebeaupin Brossier C, Chaboureau JP, Béranger K, Drobinski P (2012) A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertainties. Nat Hazards Earth Syst Sci 12(3):785–798. https://doi.org/10.5194/nhess-12-785-2012

    Article  Google Scholar 

  20. Correia F, Alvalá R, Manzi AO (2008) Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theor Appl Climatol 93:225–244. https://doi.org/10.1007/s00704-007-0335-z

    Article  Google Scholar 

  21. Cotrim MF, Gava R, Campos CNS, de David CHO, Reis IdA, Teodoro LPR, Teodoro PE (2020) Physiological performance of soybean genotypes grown under irrigated and rainfed conditions. J Agron Crop Sci. https://doi.org/10.1111/jac.12448

    Article  Google Scholar 

  22. Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215. https://doi.org/10.1038/nature06960

    Article  Google Scholar 

  23. Dubreuil V, Arvor D, Funatsu BM, Nédélec V, Mello-Théry NA (2020) Les changements climatiques en Amazonie, une approche multiscalaire. In : Mercier D (ed) Les impacts spatiaux du changement climatique. ISTE, pp 247–270

  24. de Oliveira Vieira S, Satyamurty P, Andreoli RV (2013) On the South Atlantic convergence zone affecting southern Amazonia in austral summer. Atmos Res Lett 14(1):1–6. https://doi.org/10.1002/asl2.401

    Article  Google Scholar 

  25. Debortoli NS, Dubreuil V, Funatsu B, Delahaye F, de Oliveira CH, Rodrigues-Filho S, Saito CH, Fetter R (2015) Rainfall patterns in the Southern Amazon: a chronological perspective (1971–2010). Clim Change 132:251–264. https://doi.org/10.1007/s10584-015-1415-1

    Article  Google Scholar 

  26. Debortoli NS, Dubreuil V, Hirota M, Filho SR, Lindoso DP, Nabucet J (2017) Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. Int J Climatol 37(6):2889–2900. https://doi.org/10.1002/joc.4886

    Article  Google Scholar 

  27. Dubreuil V, Debortoli N, Funatsu BM, Edélec VN, Durieux L (2012) Impact of land-cover change in the Southern Amazonia Climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184:877–891. https://doi.org/10.1007/s10661-011-2006-x

    Article  Google Scholar 

  28. Dubreuil V, Fante KP, Planchon O, Sant’Anna Neto JL (2019) Climate change evidence in Brazil from Köppen’s climate annual types frequency. Int J Climatol 39(3):1446–1456. https://doi.org/10.1002/joc.5893

    Article  Google Scholar 

  29. Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475. https://doi.org/10.1002/2014WR016273

    Article  Google Scholar 

  30. Espinoza JC, Ronchail J, Marengo JA, Segura H (2019a) Contrasting north-south changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn 52:5413–5430. https://doi.org/10.1007/s00382-018-4462-2

    Article  Google Scholar 

  31. Espinoza JC, Sörensson AA, Ronchail J, Molina-Carpio J, Segura H, Gutierrez-Cori O, Ruscica R, Condom T, Wongchuig-Correa S (2019b) Regional hydro-climatic changes in the Southern Amazon Basin (Upper Madeira Basin) during the 1982–2017 period. J Hydrol Reg Stud 26:100637. https://doi.org/10.1016/j.ejrh.2019.100637

    Article  Google Scholar 

  32. Espinoza JC, Garreaud R, Poveda G, Arias PA, Molina-Carpio J, Masiokas M, Viale M, Scaff L (2020) Hydroclimate of the Andes part I: main climatic features. Front Earth Sci 8:64. https://doi.org/10.3389/feart.2020.00064

    Article  Google Scholar 

  33. Espinoza Villar JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29(11):1574–1594. https://doi.org/10.1002/joc.1791

    Article  Google Scholar 

  34. Fernandes K, Giannini A, Verchot L, Baethgen W, Pinedo-Vasquez M (2015) Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys Res Lett 42(16):6793–6801. https://doi.org/10.1002/2015GL063911

    Article  Google Scholar 

  35. Fischer EM, Sedlácek J, Hawkins E, Knutti R (2014) Models agree on forced response pattern of precipitation and temperature extremes. Geophys Res Lett 41(23):8554–8562. https://doi.org/10.1002/2014GL062018

    Article  Google Scholar 

  36. Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K, Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projections. Proc Natl Acad Sci (USA) 110(45):18110–18115. https://doi.org/10.1073/pnas.1302584110

    Article  Google Scholar 

  37. Funatsu BM, Claud C, Chaboureau JP (2009) Comparison between the large-scale environments of moderate and intense precipitating systems in the Mediterranean region. Mon Weather Rev 137(11):3933–3959. https://doi.org/10.1175/2009MWR2922.1

    Article  Google Scholar 

  38. Funatsu BM, Dubreuil V, Claud C, Arvor D, Gan MA (2012) Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets. J Geophys Res Atmos. https://doi.org/10.1029/2011JD017259

    Article  Google Scholar 

  39. Funatsu BM, Rysman JF, Claud C, Chaboureau JP (2018) Deep convective clouds distribution over the Mediterranean region from AMSU-B/MHS observations. Atmos Res 207:122–135. https://doi.org/10.1016/j.atmosres.2018.03.003

    Article  Google Scholar 

  40. Funatsu BM, Dubreuil V, Racapé A, Debortoli NS, Nasuti S, Le Tourneau FM (2019) Perceptions of climate and climate change by Amazonian communities. Glob Environ Change 57:101923. https://doi.org/10.1016/j.gloenvcha.2019.05.007

    Article  Google Scholar 

  41. Funk C, Peterson P, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Howell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  42. Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J Clim 17(1):47–66. https://doi.org/10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2

    Article  Google Scholar 

  43. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. https://doi.org/10.1002/grl.50377

    Article  Google Scholar 

  44. Gloor M, Barichivich J, Ziv G, Brienen R, Schöngart J, Peylin P, Ladvocat Cintra BB, Feldpausch T, Phillips O, Baker J (2015) Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Glob Biogeochem Cycles 29(9):1384–1399. https://doi.org/10.1002/2014GB005080

    Article  Google Scholar 

  45. Haghtalab N, Moore N, Heerspink B, Hyndman DW (2020) Evaluating spatial patterns in precipitation trends across the Amazon basin driven by land cover and global scale forcings. Theor Appl Climatol 140:411–427. https://doi.org/10.1007/s00704-019-03085-3

    Article  Google Scholar 

  46. Hampf AC, Stella T, Berg-Mohnicke M, Kawohl T, Kilian M, Nendel C (2020) Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agric Syst 177:102707. https://doi.org/10.1016/j.agsy.2019.102707

    Article  Google Scholar 

  47. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Noz-Sabater JM, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara GD, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  48. Hong G, Heygster G, Miao J, Kunzi K (2005) Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J Geophys Res Atmos. https://doi.org/10.1029/2004JD004949

    Article  Google Scholar 

  49. Jacques-Coper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35(8):2164–2179. https://doi.org/10.1002/joc.4120

    Article  Google Scholar 

  50. Jiménez-Muñoz J, Mattar C, Barichivich J, Santamaría-Artigas A, Takahashi K, Malhi Y, Sobrino JA, van der Schrier G (2016) Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci Rep 6:33130. https://doi.org/10.1038/srep33130

    Article  Google Scholar 

  51. Jimenez JC, Libonati R, Peres LF (2018) Droughts over Amazonia in 2005, 2010, and 2015: a cloud cover perspective. Front Earth Sci 6:227. https://doi.org/10.3389/feart.2018.00227

    Article  Google Scholar 

  52. Jimenez JC, Marengo JA, Alves LM, Sulca JC, Takahashi K, Ferrett S, Collins M (2019) The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. Int J Climatol. https://doi.org/10.1002/joc.6453

    Article  Google Scholar 

  53. Jones C (2019) Recent changes in the South America low-level jet. NPJ Clim Atmos Sci 2:20. https://doi.org/10.1038/s41612-019-0077-5

    Article  Google Scholar 

  54. Jones C, Carvalho LMV (2002) Active and break phases in the South American monsoon system. J Clim 15(8):905–914. https://doi.org/10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2

    Article  Google Scholar 

  55. Kayano MT, Andreoli RV (2007) Relations of South American summer rainfall interannual variations with the Pacific decadal oscillation. Int J Climatol 27(4):531–540. https://doi.org/10.1002/joc.1417

    Article  Google Scholar 

  56. Kayano MT, Capistrano VB (2014) How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. Int J Climatol 34(1):162–178. https://doi.org/10.1002/joc.3674

    Article  Google Scholar 

  57. Kayano MT, Andreoli RV, de Souza RAF (2020) Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. Int J Climatol 40(4):2183–2200. https://doi.org/10.1002/joc.6326

    Article  Google Scholar 

  58. Khanna J, Medvigy D, Fueglistaler S, Walko R (2017) Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat Clim Change 7:200–204. https://doi.org/10.1038/nclimate3226

    Article  Google Scholar 

  59. Kodama Y (1992) Large-scale common features of subtropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ) part I: characteristics of subtropical frontal zones. J Meteorol Soc Jpn 70(4):813–836. https://doi.org/10.2151/jmsj1965.70.4_813

    Article  Google Scholar 

  60. Kodama Y (1993) Large-scale common features of sub-tropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part II: conditions of the circulations for generating the STCZs. J Meteorol Soc Jpn 71(5):581–610. https://doi.org/10.2151/jmsj1965.71.5_581

    Article  Google Scholar 

  61. Lawrence D, Vandecar K (2015) Effects of tropical deforestation on climate and agriculture. Nat Clim Change 5:27–36. https://doi.org/10.1038/nclimate2430

    Article  Google Scholar 

  62. Leite-Filho AT, Costa MH, Fu R (2020) The southern Amazon rainy season: the role of deforestation and its interactions with large-scale mechanisms. Int J Climatol 40(4):2328–2341. https://doi.org/10.1002/joc.6335

    Article  Google Scholar 

  63. Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–678

    Article  Google Scholar 

  64. Lian T, Chen D, Ying J, Huang P, Tang Y (2018) Tropical Pacific trends under global warming: El Niño-like or La Niña-like? Natl Sci Rev 5(6):810–812. https://doi.org/10.1093/nsr/nwy134

    Article  Google Scholar 

  65. Marengo J (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78:79–96. https://doi.org/10.1007/s00704-004-0045-8

    Article  Google Scholar 

  66. Marengo JA, Espinoza JC (2016) Review: extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  67. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280

    Article  Google Scholar 

  68. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516. https://doi.org/10.1175/2007JCLI1600.1

    Article  Google Scholar 

  69. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett. https://doi.org/10.1029/2011GL047436

    Article  Google Scholar 

  70. Marengo JA Jr, Thonicke CMSK, Burton C, Halladay K, Betts RA, Alves LM, Soares WR (2018) Changes in climate and land use over the Amazon region: current and future variability and trends. Front Earth Sci 6:228. https://doi.org/10.3389/feart.2018.00228

    Article  Google Scholar 

  71. Martinez JA, Dominguez F (2014) Sources of atmospheric moisture for the La Plata river basin. J Clim 27(17):6737–6753. https://doi.org/10.1175/JCLI-D-14-00022.1

    Article  Google Scholar 

  72. Mayta VC, Ambrizzi T, Espinoza JC, Silva Dias PL (2018) The role of the Madden-Julian oscillation on the Amazon Basin intraseasonal rainfall variability. Int J Climatol 39(1):343–360. https://doi.org/10.1002/joc.5810

    Article  Google Scholar 

  73. Mayta VC, Silva NP, Ambrizzi T, Silva-Dias P, Espinoza JC (2020) Assessing the skill of all-season diverse Madden-Julian oscillation indices for the intraseasonal Amazon precipitation. Clim Dyn 54:3729–3749. https://doi.org/10.1007/s00382-020-05202-9

    Article  Google Scholar 

  74. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent walker circulation strengthening and pacific cooling amplified by Atlantic warming. J Clim 27:6737–6753. https://doi.org/10.1175/JCLI-D-14-00022.1

    Article  Google Scholar 

  75. Michot V (2017) Spatial and temporal analysis of the precipitation schemes variability in the Amazonian basin. Ph.D. Thesis, Université Rennes 2

  76. Michot V, Vila D, Arvor D, Corpetti T, Ronchail J, Funatsu BM, Dubreuil V (2018) Performance of TRMM TMPA 3B42 V7 in replicating daily rainfall and regional rainfall regimes in the Amazon basin (1998–2013). Remote Sens. https://doi.org/10.3390/rs10121879

    Article  Google Scholar 

  77. Nobre CA, Obregón GO, Marengo JA, Fu R, Poveda G (2009) Characteristics of Amazonian climate: main features. Am Geophys Union (AGU). https://doi.org/10.1029/2009GM000903

    Article  Google Scholar 

  78. Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc Natl Acad Sci (USA) 113(39):10759–10768. https://doi.org/10.1073/pnas.1605516113

    Article  Google Scholar 

  79. Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125(2):279–291. https://doi.org/10.1175/1520-0493(1997)125

    Article  Google Scholar 

  80. Paca VHM, Espinoza-Dávalos GE, Moreira DM, Comair G (2020) Variability of trends in precipitation across the Amazon River Basin determined from the CHIRPS precipitation product and from station records. Water 12(5):1244. https://doi.org/10.3390/w12051244

  81. Paccini L, Espinoza JC, Ronchail J, Segura H (2018) Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: a focus on western Amazon-Andes transition region. Int J Climatol 38(5):2386–2399. https://doi.org/10.1002/joc.5341

    Article  Google Scholar 

  82. Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15(12):1389–1407. https://doi.org/10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2

    Article  Google Scholar 

  83. Pires GF, Abrahão GM, Brumatti LM, Oliveira LJ, Costa MH, Liddicoat S, Kato E, Ladle RJ (2016) Increased climate risk in Brazilian double cropping agriculture systems: implications for land use in Northern Brazil. Agric For Meteorol 228–229:286–298. https://doi.org/10.1016/j.agrformet.2016.07.005

    Article  Google Scholar 

  84. Rao VB, Hada K (1990) Characteristics of rainfall over Brazil: annual variations and connections with the Southern Oscillation. Theor Appl Climatol 42:81–91. https://doi.org/10.1007/BF00868215

    Article  Google Scholar 

  85. Ronchail J, Gallaire R (2006) ENSO and rainfall along the Zongo valley (Bolivia) from the Altiplano to the Amazon basin. Int J Climatol 26(9):1223–1236. https://doi.org/10.1002/joc.1296

    Article  Google Scholar 

  86. Ronchail J, Cochonneau G, Molinier M, Guyot J, De Miranda Chaves A, Guimarães V, De Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the Equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22(13):1663–1686. https://doi.org/10.1002/joc.815

    Article  Google Scholar 

  87. Ronchail J, Bourrel L, Cochonneau G, Vauchel P, Phillips L, Castro A, Guyot J, De Oliveira E (2005) Inundations in the Mamore basin (South-Western Amazon–Bolivia) and sea-surface temperature in the Pacific and Atlantic oceans. J Hydrol 302(1–4):223–238. https://doi.org/10.1016/j.jhydrol.2004.07.005

    Article  Google Scholar 

  88. Ronchail J, Guyot JL, Espinoza Villar JC, Fraizy P, Cochonneau G, Ordenez JJ (2006) Impact of the Amazon tributaries on major flood in Óbidos. In: Procceedings of the fifth FRIEND world conference held at Havana, Cuba, November 2006. IAHS Publ. 308, 2006, pp 220–225

  89. Rosa EB, Pezzi LP, Quadro MFLd, Brunsell N (2020) Automated detection algorithm for SACZ, oceanic SACZ, and their climatological features. Front Environ Sci 8:18. https://doi.org/10.3389/fenvs.2020.00018

    Article  Google Scholar 

  90. Rysman JF, Claud C, Chaboureau JP, Delanoë J, Funatsu BM (2016) Severe convection in the Mediterranean from microwave observations and a convection-permitting model. Q J R Meteorol Soc 142:43–55. https://doi.org/10.1002/qj.2611

    Article  Google Scholar 

  91. Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett. https://doi.org/10.1029/2007GL030612

    Article  Google Scholar 

  92. Segura H, Espinoza J, Junquas C, Lebel T, Vuille M, Garreaud R (2020) Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon. Clim Dyn 54:2613–2631. https://doi.org/10.1007/s00382-020-05132-6

    Article  Google Scholar 

  93. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. https://doi.org/10.1002/jgrd.50203

    Article  Google Scholar 

  94. Siqueira JR, Toledo Machado LA (2004) Influence of the frontal systems on the day-to-day convection variability over South America. J Clim 17(9):1754–1766. https://doi.org/10.1175/1520-0442(2004)017<1754:IOTFSO>2.0.CO;2

    Article  Google Scholar 

  95. Staal A, Flores BM, Aguiar APD, Bosmans JHC, Fetzer I, Tuinenburg OA (2020) Feedback between drought and deforestation in the Amazon. Environ Res Lett 15:044024. https://doi.org/10.1088/1748-9326/ab738e

    Article  Google Scholar 

  96. Towner J, Cloke HL, Lavado W, Santini W, Bazo J, de Perez EC, Stephens EM (2020) Attribution of Amazon floods to modes of climate variability: a review. Meteorol Appl 27:e1949. https://doi.org/10.1002/met.1949

    Article  Google Scholar 

  97. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000. https://doi.org/10.1175/JCLI3896.1

    Article  Google Scholar 

  98. Vilanova RS, Delgado RC, da Silva Abel EL, Teodoro PE, Silva Junior CA, Wanderley HS, Capristo-Silva GF (2020) Past and future assessment of vegetation activity for the state of Amazonas-Brazil. Remote Sens Appl Soc Environ 17:100278. https://doi.org/10.1016/j.rsase.2019.100278

    Article  Google Scholar 

  99. Wang XY, Li X, Zhu J, Tanajura CAS (2018) The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environ Res Lett 13:094015. https://doi.org/10.1088/1748-9326/aadbb9

    Article  Google Scholar 

  100. Wendisch M, Pöschl U, Andreae MO, Machado LAT, Albrecht R, Schlager H, Rosenfeld D, Martin ST, Abdelmonem A, Afchine A, Araùjo AC, Artaxo P, Aufmhoff H, Barbosa HMJ, Borrmann S, Braga R, Buchholz B, Cecchini MA, Costa A, Curtius J, Dollner M, Dorf M, Dreiling V, Ebert V, Ehrlich A, Ewald F, Fisch G, Fix A, Frank F, Fütterer D, Heckl C, Heidelberg F, Hüneke T, Jäkel E, Järvinen E, Jurkat T, Kanter S, Kästner U, Kenntner M, Kesselmeier J, Klimach T, Knecht M, Kohl R, Kölling T, Krämer M, Krüger M, Krisna TC, Lavric JV, Longo K, Mahnke C, Manzi AO, Mayer B, Mertes S, Minikin A, Molleker S, Münch S, Nillius B, Pfeilsticker K, Pöhlker C, Roiger A, Rose D, Rosenow D, Sauer D, Schnaiter M, Schneider J, Schulz C, de Souza RAF, Spanu A, Stock P, Vila D, Voigt C, Walser A, Walter D, Weigel R, Weinzierl B, Werner F, Yamasoe MA, Ziereis H, Zinner T, Zöger M (2016) ACRIDICON-CHUVA campaign: studying tropical deep convective clouds and precipitation over Amazonia Using the new German Research Aircraft HALO. Bull Am Meteorol Soc 97(10):1885–1908. https://doi.org/10.1175/BAMS-D-14-00255.1

    Article  Google Scholar 

  101. Wright JS, Fu R, Worden JR, Chakraborty S, Clinton NE, Risi C, Sun Y, Yin L (2017) Rainforest-initiated wet season onset over the southern amazon. Proc Natl Acad Sci (USA) 114(32):8481–8486. https://doi.org/10.1073/pnas.1621516114

    Article  Google Scholar 

  102. Yin L, Fu R, Zhang YF, Arias PA, Fernando DN, Li W, Fernandes K, Bowerman AR (2014) What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res Atmos 119(5):2314–2328. https://doi.org/10.1002/2013JD021349

    Article  Google Scholar 

  103. Yoon J, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264. https://doi.org/10.1007/s00382-009-0551-6

    Article  Google Scholar 

  104. Zemp DC, Schleussner CF, Barbosa HMJ, van der Ent RJ, Donges JF, Heinke J, Sampaio G, Rammig A (2014) On the importance of cascading moisture recycling in South America. Atmos Chem Phys 14(23):13337–13359. https://doi.org/10.5194/acp-14-13337-2014

    Article  Google Scholar 

  105. Zemp DC, Schleussner CF, Barbosa HMJ, Hirota M, Montade V, Sampaio G, Staal A, Wang-Erlandsson L, Rammig A (2017a) Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat Commun 8:14681. https://doi.org/10.1038/ncomms14681

    Article  Google Scholar 

  106. Zemp DC, Schleussner CF, Barbosa HMJ, Rammig A (2017b) Deforestation effects on Amazon forest resilience. Geophys Res Lett 44(12):6182–6190. https://doi.org/10.1002/2017GL072955

    Article  Google Scholar 

  107. Zeng N, Yoon H, Marengo J, Subramaniam A, Nobre C, Mariotti A, Neelin D (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3:014002. https://doi.org/10.1088/1748-9326/3/1/014002

    Article  Google Scholar 

  108. Zilli M, Carvalho L, Lintner B (2019) The poleward shift of South Atlantic convergence zone in recent decades. Clim Dyn 52:2545–2563. https://doi.org/10.1007/s00382-018-4277-1

    Article  Google Scholar 

  109. Zuffo AM, Steiner F, Aguilera JG, Teodoro PE, Teodoro LPR, Busch A (2020) Multi-trait stability index: a tool for simultaneous selection of soya bean genotypes in drought and saline stress. J Agron Crop Sci 206(6):815–822. https://doi.org/10.1111/jac.12409

    Article  Google Scholar 

Download references

Acknowledgements

AMSU data was accessed through ICARE Data and Services Center with support of the IPSL-ESPRI team. BMF, RLR, DA and VD acknowledge the support of the program CLIMAT-AMSUD 21-CLIMAT-12.

Funding

This study was funded by the ODYSSEA project (European Union’s Horizon 2020 Research and innovation programme Marie Skłodowska Curie No 691053), and by the French National Centre for Scientific Research (CNRS) International Emerging Action project SCOLTEL. BMF and CC acknowledge the CNRS-LEFE project “Parashoots”. JCE is supported by the French AMANECER-MOPGA project funded by ANR and IRD (ref. ANR-18-MPGA-0008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beatriz M. Funatsu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Code availability

All codes used in this study were developed by B.M.F. Software to process and anlayse precipitation extremes are made freely available by the ETCCDI team, at http://etccdi.pacificclimate.org/software.shtml.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4049 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Funatsu, B.M., Le Roux, R., Arvor, D. et al. Assessing precipitation extremes (1981–2018) and deep convective activity (2002–2018) in the Amazon region with CHIRPS and AMSU data. Clim Dyn 57, 827–849 (2021). https://doi.org/10.1007/s00382-021-05742-8

Download citation

Keywords

  • Precipitation extremes
  • Deep convective clouds
  • Climatology
  • Trends
  • Amazon