Skip to main content

High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece

Abstract

This study presents the results of high-resolution dynamical downscaling of 5 km on maximum (TX) and minimum (TN) air temperature and precipitation, for Greece, with the Weather Research and Forecasting (WRF) model. The ERA-Interim (ERA-I) reanalysis dataset is used for initial and boundary conditions. The model results (WRF_5) are evaluated against available ground observations for the period 1980–2004 through the calculation of mean climatology, statistical metrics, and distributions of extreme events on daily, monthly and seasonal scales. WRF_5 model captures very well the geographical distribution of TX and TN of the study area, and illustrates finely the seasonal differences. Statistical results for TX (TN) indicate a cold (warm) bias of − 0.6 °C (1 °C) regarding WRF_5 and − 3 °C (0.5 °C) for ERA-I. The efficiency metrics for temperatures showed a highly improved performance of the model compared to reanalysis for all temporal scales investigated. The observed mean annual cycle and inter-annual variability of precipitation are also well represented by model simulation. Although WRF_5 overestimates rainfall during most of the year, the seasonal pattern of WRF_5 presented similar correlation coefficients for all stations with a range of 0.6–0.85, showing a good model ability to simulate the precipitation in Greece. The results reveal the capability of the configured WRF high resolution model to reproduce the main climatological variables of the study area, outperforming the coarse resolution ERA-Interim in a region that is dominated by highly variable topographic characteristics. This is deemed necessary for undertaking any further studies concerning future climate change impacts in various sectors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Availability of data and material

The datasets generated during the current study are not publicly available due to size and space limitations but are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012) Evaluation of WRF mean and extreme precipitation over Spain: present climate (1970–99). J Clim 25:4883–4897. https://doi.org/10.1175/JCLI-D-11-00276.1

    Article  Google Scholar 

  2. Barstad I, Sorteberg A, Flatøy F, Déqué M (2009) Precipitation, temperature and wind in Norway: dynamical downscaling of ERA40. Clim Dyn 33:769–776. https://doi.org/10.1007/s00382-008-0476-5

    Article  Google Scholar 

  3. Bartók B, Wild M, Folini D et al (2017) Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Clim Dyn 49:2665–2683. https://doi.org/10.1007/s00382-016-3471-2

    Article  Google Scholar 

  4. Berg P, Wagner S, Kunstmann H, Schädler G (2013) High resolution regional climate model simulations for Germany: part I—validation. Clim Dyn 40:401–414. https://doi.org/10.1007/s00382-012-1508-8

    Article  Google Scholar 

  5. Berg P, Christensen OB, Klehmet K et al (2019) Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution. Nat Hazard 19:957–971. https://doi.org/10.5194/nhess-19-957-2019

    Article  Google Scholar 

  6. Bieniek PA, Bhatt US, Walsh JE et al (2016) Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska. J Appl Meteorol Climatol 55:635–654. https://doi.org/10.1175/JAMC-D-15-0153.1

    Article  Google Scholar 

  7. Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608. https://doi.org/10.1002/joc.3616

    Article  Google Scholar 

  8. Cardoso RM, Soares PMM, Lima DCA, Miranda PMA (2019) Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim Dyn 52(1–2):129–157

    Article  Google Scholar 

  9. Cavicchia L, Scoccimarro E, Gualdi S et al (2018) Mediterranean extreme precipitation: a multi-model assessment. Clim Dyn 51:901–913. https://doi.org/10.1007/s00382-016-3245-x

    Article  Google Scholar 

  10. Chen F, Mitchell K, Schaake J et al (1996) Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res Atmos 101:7251–7268. https://doi.org/10.1029/95JD02165

    Article  Google Scholar 

  11. Chen F, Dudhia J, Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585. https://doi.org/10.1175/1520-0493(2001)129%3c0569:CAALSH%3e2.0.CO;2

    Article  Google Scholar 

  12. Colmet-Daage A, Sanchez-Gomez E, Ricci S et al (2018) Evaluation of uncertainties in mean and extreme precipitation under climate change for northwestern Mediterranean watersheds from high-resolution Med and Euro-CORDEX ensembles. Hydrol Earth Syst Sci 22:673–687. https://doi.org/10.5194/hess-22-673-2018

    Article  Google Scholar 

  13. Coppola E, Sobolowski S, Pichelli E et al (2020) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn 55:3–34. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  14. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  15. Déqué M, Rowell DP, Lüthi D et al (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70. https://doi.org/10.1007/s10584-006-9228-x

    Article  Google Scholar 

  16. Dulière VR, Zhang Y, Salathé EP (2011) Extreme precipitation and temperature over the US Pacific Northwest: a comparison between observations, reanalysis data, and regional models. J Clim 24:1950–1964. https://doi.org/10.1175/2010JCLI3224.1

    Article  Google Scholar 

  17. Eleftheriou D, Kiachidis K, Kalmintzis G et al (2018) Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece—climate change implications. Sci Total Environ 616–617:937–947. https://doi.org/10.1016/j.scitotenv.2017.10.226

    Article  Google Scholar 

  18. El-Samra R, Bou-Zeid E, El-Fadel M (2018) What model resolution is required in climatological downscaling over complex terrain? Atmos Res 203:68–82. https://doi.org/10.1016/j.atmosres.2017.11.030

    Article  Google Scholar 

  19. Emery C, Tai E, Yarwood G (2001) Enhanced meteorological modeling and performance evaluation for two texas ozone episodes. Environ International Corporation, p 235

    Google Scholar 

  20. Emmanouil G, Vlachogiannis D, Sfetsos A (2021) Exploring the ability of the WRF-ARW atmospheric model to simulate different meteorological conditions in Greece. Atmos Res 247:105226. https://doi.org/10.1016/j.atmosres.2020.105226

    Article  Google Scholar 

  21. Expósito FJ, González A, Pérez JC et al (2015) High-resolution future projections of temperature and precipitation in the Canary Islands. J Clim 28:7846–7856. https://doi.org/10.1175/JCLI-D-15-0030.1

    Article  Google Scholar 

  22. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Develop 9(5):1937–1958

    Article  Google Scholar 

  23. Fantini A, Raffaele F, Torma C et al (2018) Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn 51:877–900. https://doi.org/10.1007/s00382-016-3453-4

    Article  Google Scholar 

  24. Gao Y, Xu J, Chen D (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J Clim 28:2823–2841. https://doi.org/10.1175/JCLI-D-14-00300.1

    Article  Google Scholar 

  25. García-Díez M, Fernández J, Vautard R (2015) An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation. Clim Dyn 45:3141–3156. https://doi.org/10.1007/s00382-015-2529-x

    Article  Google Scholar 

  26. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs atthe regional level: The CORDEX framework. World Meteorol Organ Bull 58:175–183

  27. Gutowski WJ Jr, Ullrich PA, Hall A et al (2020) The ongoing need for high-resolution regional climate models: process understanding and stakeholder information. Bull Am Meteorol Soc 101:E664–E683. https://doi.org/10.1175/BAMS-D-19-0113.1

    Article  Google Scholar 

  28. Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564. https://doi.org/10.1007/s00382-010-0928-6

    Article  Google Scholar 

  29. Henderson-Sellers A, Pitman AJ, Love PK et al (1995) The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): phases 2 and 3. Bull Am Meteorol Soc 76:489–503

    Article  Google Scholar 

  30. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res Atmos 115:1–13. https://doi.org/10.1029/2010JD013936

    Article  Google Scholar 

  31. Hewitt C (2005) The ENSEMBLES Project: Providing ensemble-based predictions of climate changes and their impacts. EGGS Newslett 13:22–25. http://www.the-eggs.org/?issueSel=24

  32. Hong S-Y, Lim J-O (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42(2):129–151

    Google Scholar 

  33. Horton DE, Johnson NC, Singh D et al (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522:465–469. https://doi.org/10.1038/nature14550

    Article  Google Scholar 

  34. Hu X-M, Xue M, McPherson RA et al (2018) Precipitation dynamical downscaling over the Great Plains. J Adv Model Earth Syst 10:421–447. https://doi.org/10.1002/2017MS001154

    Article  Google Scholar 

  35. Iacono MJ, Delamere JS, Mlawer EJ et al (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  36. Jacob D, Petersen J, Eggert B et al (2014) Erratum to: EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:579–581. https://doi.org/10.1007/s10113-014-0587-y

    Article  Google Scholar 

  37. Janjić ZI (2001) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NOAA/NWS/NCEP office note 437, 61 pp

    Google Scholar 

  38. Ke Y, Leung LR, Huang M, Li H (2013) Enhancing the representation of subgrid land surface characteristics in land surface models. Geosci Model Dev 6:1609–1622. https://doi.org/10.5194/gmd-6-1609-2013

    Article  Google Scholar 

  39. Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WCDMP-72, WMO-TD/No. 1500

  40. Knist S, Goergen K, Buonomo E et al (2017) Land-atmosphere coupling in EURO-CORDEX evaluation experiments. J Geophys Res Atmos 122:79–103. https://doi.org/10.1002/2016JD025476

    Article  Google Scholar 

  41. Komurcu M, Emanuel KA, Huber M, Acosta RP (2018) High-resolution climate projections for the Northeastern United States using dynamical downscaling at convection-permitting scales. Earth Space Sci 5:801–826. https://doi.org/10.1029/2018EA000426

    Article  Google Scholar 

  42. Kryza M, Wałaszek K, Ojrzyńska H et al (2017) High-resolution dynamical downscaling of ERA-Interim using the WRF regional climate model for the area of Poland. Part 1: model configuration and statistical evaluation for the 1981–2010 period. Pure Appl Geophys 174:511–526. https://doi.org/10.1007/s00024-016-1272-5

    Article  Google Scholar 

  43. Lee JA, Xue L, Newman AJ, et al (2018) Validation of a 14-year high-resolution WRF dataset for wind resource assessment over Alaska. In: 98th AMS annual meeting. NREL/PR-5000-70785, Austin, TX, pp 1–33

  44. Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241. https://doi.org/10.1029/1998WR900018

    Article  Google Scholar 

  45. Lhotka O, Kyselý J, Plavcová E (2018) Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim Dyn 50:4249–4262. https://doi.org/10.1007/s00382-017-3873-9

    Article  Google Scholar 

  46. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851. https://doi.org/10.1029/RG020i004p00851

    Article  Google Scholar 

  47. Molina MO, Sánchez E, Gutiérrez C (2020) Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Sci Rep 10:8801. https://doi.org/10.1038/s41598-020-65663-0

    Article  Google Scholar 

  48. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  49. Nastos PT, Kapsomenakis J, Philandras KM (2016) Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece. Atmos Res 169:497–514. https://doi.org/10.1016/j.atmosres.2015.08.008

    Article  Google Scholar 

  50. Nastos PT, Karavana Papadimou K, Matsangouras IT (2018) Mediterranean tropical-like cyclones: impacts and composite daily means and anomalies of synoptic patterns. Atmos Res 208:156–166. https://doi.org/10.1016/j.atmosres.2017.10.023

    Article  Google Scholar 

  51. Ojeda MG-V, Gámiz-Fortis SR, Hidalgo-Muñoz JM et al (2015) Regional climate model sesitivity to different parameterizations schemes with WRF over Spain. Geophys Res Abstr EGU Gen Assembly 17:2015–11640

    Google Scholar 

  52. Palmer TN (2013) Climate extremes and the role of dynamics. Proc Natl Acad Sci USA 110:5281–5282. https://doi.org/10.1073/pnas.1303295110

    Article  Google Scholar 

  53. Pérez JC, Díaz JP, González A et al (2014) Evaluation of WRF parameterizations for dynamical downscaling in the Canary Islands. J Clim 27:5611–5631. https://doi.org/10.1175/JCLI-D-13-00458.1

    Article  Google Scholar 

  54. Politi N, Nastos PT, Sfetsos A et al (2017) Evaluation of the AWR-WRF model configuration at high resolution over the domain of Greece. Atmos Res. https://doi.org/10.1016/J.ATMOSRES.2017.10.019

    Article  Google Scholar 

  55. Politi N, Sfetsos A, Vlachogiannis D et al (2020) A sensitivity study of high-resolution climate simulations for Greece. Climate 8:1–28. https://doi.org/10.3390/cli8030044

    Article  Google Scholar 

  56. Prein AF, Gobiet A, Truhetz H et al (2016) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits. Clim Dyn 46:383–412. https://doi.org/10.1007/s00382-015-2589-y

    Article  Google Scholar 

  57. Prein AF, Rasmussen RM, Ikeda K et al (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7:48–52. https://doi.org/10.1038/nclimate3168

    Article  Google Scholar 

  58. Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279. https://doi.org/10.1017/S1350482700001511

    Article  Google Scholar 

  59. Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Aznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloché S, Brauch J, Cabos W, Calmanti S, Calvet J-C, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galàn P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jordà G, L’Heveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Maciàs D, Nabat P, Önol B, Raikovic B, Ramage K, Sevault F, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V (2016) Med-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97(7):1187–1208

    Article  Google Scholar 

  60. Skamarock WC, Skamarock WC, Klemp JB, et al (2008) A description of the advanced research WRF version 3. In: NCAR technical note – 475 + STR

  61. Soares PMM, Cardoso RM, Miranda PMA et al (2012a) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522. https://doi.org/10.1007/s00382-012-1315-2

    Article  Google Scholar 

  62. Soares PMM, Cardoso RM, Miranda PMA et al (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res Atmos 117:1–18. https://doi.org/10.1029/2011JD016768

    Article  Google Scholar 

  63. Sørland SL, Schär C, Lüthi D, Kjellström E (2018) Bias patterns and climate change signals in GCM-RCM model chains. Environ Res Lett. https://doi.org/10.1088/1748-9326/aacc77

    Article  Google Scholar 

  64. Spyridi D, Vlachokostas C, Michailidou VA, Sioutas C, Moussiopoulos N (2015) Strategic planning for climate change mitigation and adaptation: the case of Greece. Int J Clim Change Strateg Manag 7:272–289. https://doi.org/10.1108/IJCCSM-02-2014-0027

    Article  Google Scholar 

  65. Sun X, Xue M, Brotzge J et al (2016) An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J Geophys Res Atmos 121:13801–13825. https://doi.org/10.1002/2016JD024796

    Article  Google Scholar 

  66. Sylla MB, Coppola E, Mariotti L et al (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-Interim reanalysis. Clim Dyn 35:231–247. https://doi.org/10.1007/s00382-009-0613-9

    Article  Google Scholar 

  67. Tapiador FJ, Moreno R, Navarro A et al (2019) Climate classifications from regional and global climate models: performances for present climate estimates and expected changes in the future at high spatial resolution. Atmos Res 228:107–121. https://doi.org/10.1016/j.atmosres.2019.05.022

    Article  Google Scholar 

  68. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  69. Tian L, Jin J, Wu P et al (2020) High-resolution simulations of mean and extreme precipitation with WRF for the soil-erosive Loess Plateau. Clim Dyn 54:3489–3506. https://doi.org/10.1007/s00382-020-05178-6

    Article  Google Scholar 

  70. Vergara-Temprado J, Ban N, Panosetti D et al (2020) Climate models permit convection at much coarser resolutions than previously considered. J Clim 33:1915–1933. https://doi.org/10.1175/JCLI-D-19-0286.1

    Article  Google Scholar 

  71. Wagner S, Berg P, Schädler G, Kunstmann H (2013) High resolution regional climate model simulations for Germany: part II—projected climate changes. Clim Dyn 40:415–427. https://doi.org/10.1007/s00382-012-1510-1

    Article  Google Scholar 

  72. Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2013) Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: precipitation in Germany. Clim Dyn 41:755–774. https://doi.org/10.1007/s00382-013-1727-7

    Article  Google Scholar 

  73. Warscher M, Wagner S, Marke T et al (2019) A 5 km resolution regional climate simulation for Central Europe: performance in high mountain areas and seasonal, regional and elevation-dependent variations. Atmosphere. https://doi.org/10.3390/atmos10110682

    Article  Google Scholar 

  74. White BA, Buchanan AM, Birch CE et al (2018) Quantifying the effects of horizontal grid length and parameterized convection on the degree of convective organization using a metric of the potential for convective interaction. J Atmos Sci 75:425–450. https://doi.org/10.1175/JAS-D-16-0307.1

    Article  Google Scholar 

  75. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194. https://doi.org/10.1080/02723646.1981.10642213

    Article  Google Scholar 

  76. Zerefos CS, Repapis C, Giannakopoulos C et al (2011) The climate of the Eastern Mediterranean and Greece: past, present and future. The environmental, economic and social impacts of climate change in Greece. Bank of Greece, pp 1–126. https://www.bankofgreece.gr/Publications/ClimateChange_FullReport_bm.pdf

    Google Scholar 

  77. Zhang Y, Dulière V, Mote PW et al (2009) Evaluation of WRF and HadRM Mesoscale climate simulations over the U.S. Pacific Northwest*. J Clim 22:5511–5526. https://doi.org/10.1175/2009JCLI2875.1

    Article  Google Scholar 

  78. Zhang C, Wang Y, Lauer A, Hamilton K (2012) Configuration and evaluation of the WRF model for the study of Hawaiian regional climate. Mon Weather Rev 140:3259–3277. https://doi.org/10.1175/MWR-D-11-00260.1

    Article  Google Scholar 

  79. Zhang C, Wang Y, Hamilton K, Lauer A (2016) Dynamical downscaling of the climate for the Hawaiian Islands. Part I: present day. J Clim 29:3027–3048. https://doi.org/10.1175/jcli-d-15-0432.1

    Article  Google Scholar 

  80. Zhou C, Chen D, Wang K et al (2020) Conditional attribution of the 2018 summer extreme heat over Northeast China: roles of urbanization, global warming, and warming-induced circulation changes. Bull Am Meteorol Soc 101:S71–S76. https://doi.org/10.1175/BAMS-D-19-0197.1

    Article  Google Scholar 

  81. Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J (2016) Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg Environ Change 16:1863–1876. https://doi.org/10.1007/s10113-014-0753-2

    Article  Google Scholar 

  82. Zittis G, Bruggeman A, Camera C et al (2017) The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmos Res 191:20–33. https://doi.org/10.1016/j.atmosres.2017.03.002

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the data providers in the HNMS. We kindly acknowledge Rita M. Cardoso and Pedro M. M. Soares from the Insituto Dom Luiz of University of Lisbon (Portugal) for their advice and guidance. We kindly acknowledge Jason Markantonis for his help. This work was supported by computational time granted from the Greek Research and Technology Network (GRNET) in the National HPC facility, ARIS, under project ID HRCOG (pr004020).

Funding

The authors acknowledge partial funding by the project “National Research Network for Climate Change and its Impacts, (CLIMPACT—105658/17-10-2019)” of the Ministry of Development, GSRT, Program of Public Investment, 2019. Partial funding is also acknowledged by the project “NCSRD—INRASTES research activities in the framework of the national RIS3.” (MIS 5002559) which is implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Affiliations

Authors

Contributions

Conceptualization: NP, AS and DV; methodology: NP and AS; software: NP; validation: NP; formal analysis: NP; investigation: NP, DV and AS; writing—original draft preparation: NP; writing—review and editing: DV and AS; visualization: NP; supervision: PTN, DV and AS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Politi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1192 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Politi, N., Vlachogiannis, D., Sfetsos, A. et al. High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece. Clim Dyn 57, 799–825 (2021). https://doi.org/10.1007/s00382-021-05741-9

Download citation

Keywords

  • Dynamical downscaling
  • WRF
  • Greece
  • ERA-Interim
  • Temperature
  • Precipitation