Skip to main content

Unexpected climate variability inferred from a 380-year tree-ring earlywood oxygen isotope record in the Karakoram, Northern Pakistan

Abstract

To provide a long-term context for understanding the “Karakoram Anomaly” in recent glacier studies, we originally aimed to develop an annually resolved multi-century winter–spring precipitation record using tree-ring earlywood cellulose δ18O (δ18OEW) of Pinus wallachina from the Karakoram, northern Pakistan. Out of expectation, winter (January–May) temperature rather than precipitation is found to be the dominant climate signal (r = 0.63, p < 0.01, 1955–2013) stored in the δ18OEW chronology. Precipitation signals mainly appear at high-frequency variations, but weaker than temperature signal. We reconstructed January–May temperature back to 1631 with an explained variance of 39.7 % during the calibration period of 1955–2013. The reconstruction reveals that the Little Ice Age (LIA) was 0.94 °C warmer during 1647–1746 than the twentieth century (1900–1999). These warmer conditions are additionally validated by ice-core δ18O data from the Kunlun Mountains of High Asia and the northern North America. The eastward Polar Vortex and enhanced mid-latitude Westerlies on the Euro-Asia continent may be a possible explanation of a spatial coherency of LIA temperature between the Karakoram and the northern North America. Although not the original aim of this study, we provide evidence that the attribution of anomalous behavior of Karakoram glaciers in a long-term context may be misled when using precipitation reconstructions derived from tree-ring oxygen isotope.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmad S, Zhu L, Yasmeen S et al (2020) A 424-year tree-ring-based Palmer Drought Severity Index reconstruction of Cedrus deodara D. Don from the Hindu Kush range of Pakistan: linkages to ocean oscillations. Clim Past 16:783–798. https://doi.org/10.5194/cp-16-783-2020

    Article  Google Scholar 

  2. Allen S, Kirchner J, Braun S, Siegwolf R, Goldsmith G (2019) Seasonal origins of soil water used by trees. Hydrol Earth Syst Sci 23(2):1199–1210. https://doi.org/10.5194/hess-23-1199-2019

    Article  Google Scholar 

  3. An W, Liu X, Leavitt S et al (2014) Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree–ring δ18O and δD. Clim Dynam 42(9–10):2639–2654. https://doi.org/10.1007/s00382-013-1937-z

    Article  Google Scholar 

  4. Asad F, Zhu H, Zhang H, Liang E, Muhammad S, Farhan S, Hussain I, Wazir M, Ahmed M, Esper J (2017) Are Karakoram temperatures out of phase compared to hemispheric trends? .  Clim Dyn 48(9–10):3381–3390. https://doi.org/10.1007/s00382-016-3273-6

    Article  Google Scholar 

  5. Bailey A, Posmentier E, Feng X (2018) Patterns of evaporation and precipitation drive global isotopic changes in atmospheric moisture. Geophys Res Lett 45(14):7093–7101. https://doi.org/10.1029/2018GL078254

    Article  Google Scholar 

  6. Brunello C, Andermann C, Helle G, Comiti F, Tonon G, Tiwari A, Hovius N (2019) Hydroclimatic seasonality recorded by tree ring δ18O signature across a Himalayan altitudinal transect. Earth Planet Sci Lett 518:148–159. https://doi.org/10.1016/j.epsl.2019.04.030

    Article  Google Scholar 

  7. Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  8. Brinkmann N, Seeger S, Weiler M, Buchmann N, Eugster W, Kahmen A (2018) Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytol 219:1300–1313. https://doi.org/10.1111/nph.15255

    Article  Google Scholar 

  9. Cai Z, Tian L, Bowen G (2018) Spatial–seasonal patterns reveal large–scale atmospheric controls on Asian Monsoon precipitation water isotope ratios. Earth Planet Sci Lett 503:158–169. https://doi.org/10.1016/j.epsl.2018.09.028

    Article  Google Scholar 

  10. Cook ER, Krusic P, Jones P (2003) Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int J Climatol 23:707–732. https://doi.org/10.1002/joc.911

    Article  Google Scholar 

  11. Cook ER, Krusic PJ, Anchukaitis KJ, Buckley BM, Nakatsuka T, Sano M (2013) Tree–ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE. Clim Dyn 41(11–12):2957–2972. https://doi.org/10.1007/s00382-012-1611-x

    Article  Google Scholar 

  12. Chen F, Chen J, Huang W et al (2019) Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev 192:337–354. https://doi.org/10.1016/j.earscirev.2019.03.005

    Article  Google Scholar 

  13. Curio J, Maussion F, Scherer D (2015) A 12–year high–resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Sys Dyn 6(1):109–124. https://doi.org/10.5194/esd-6-109-2015

    Article  Google Scholar 

  14. de Vernal A, Hillaire–Marcel C, Solignac S, Radi T (2008) Reconstructing sea ice conditions in the Arctic and sub–Arctic prior to human observations. In: DeWeaver ET, Bitz CM, Tremblay LB (eds) Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, vol 180. American Geophysical Union, Washington, pp 27–45

    Google Scholar 

  15. Dansgaard W (1964) Stable isotopes in precipitation. Tellus: B 16:436–468

    Article  Google Scholar 

  16. Duan J, Li L, Ma Z et al (2018) Summer cooling driven by large volcanic eruptions over the Tibetan Plateau. J Clim 31(24):9869–9879. https://doi.org/10.1175/JCLI-D-17-0664.1

    Article  Google Scholar 

  17. Edwards T, Birks S, Luckman B, MacDonald G (2008) Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat Res 70(2):188–197. https://doi.org/10.1016/j.yqres.2008.04.013

    Article  Google Scholar 

  18. Edwards T, Hammarlund D, Newton B et al (2017) Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age. Quat Sci Rev 165:102–110. https://doi.org/10.1016/j.quascirev.2017.04.018

    Article  Google Scholar 

  19. Esper J (2000) Long–term tree–ring variations in Juniperus at the upper timber–line in the Karakorum (Pakistan). Holocene 10:253–260. https://doi.org/10.1191/095968300670152685

    Article  Google Scholar 

  20. Esper J, Frank DC, Battipaglia G et al (2010) Low-frequency noise in δ13C and δ18O tree ring data: a case study of Pinus uncinata in the Spanish Pyrenees. Global Biogeochem. Cycles 24:4

    Article  Google Scholar 

  21. Esper J, St. George S, Anchukaitis K, et al (2018) Large–scale, millennial–length temperature reconstructions from tree–rings. Dendrochronologia 50:81–90. https://doi.org/10.1016/j.dendro.2018.06

    Article  Google Scholar 

  22. Emile-Geay J, McKay N, Kaufman D et al (2017) A global multiproxy database for temperature reconstructions of the Common Era. Sci Data 4:170088. https://doi.org/10.1038/sdata.2017.88

    Article  Google Scholar 

  23. Farinotti D, Immerzeel W, de Kok R, Quincey D, Dehecq A (2020) Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat Geosci 13(1):8–16. https://doi.org/10.1038/s41561-019-0513-5

    Article  Google Scholar 

  24. Forsythe N, Fowler H, Li X, Blenkinsop S, Pritchard D (2017) Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat Clim Change 7(9):664–670. https://doi.org/10.1038/nclimate3361

    Article  Google Scholar 

  25. Foroozan Z, Grießinger J, Pourtahmasi K, Bräuning A (2020) 501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data. Atmosphere 11(9):889. https://doi.org/10.3390/atmos11090889

    Article  Google Scholar 

  26. Fritts H (1976) Tree Rings and Climate. Academic Press, London

    Google Scholar 

  27. George S, Esper J (2019) Concord and discord among Northern Hemisphere paleotemperature reconstructions from tree rings. Quat Sci Rev 203:278–281. https://doi.org/10.1016/j.quascirev.2018.11.013

    Article  Google Scholar 

  28. Grießinger J, Bräuning A, Helle G, Thomas A, Schleser G (2011) Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys Res Lett 38(3):L03701. doi:https://doi.org/10.1029/2010gl045988

    Article  Google Scholar 

  29. Grießinger J, Bräuning A, Helle G et al (2019) A dual stable isotope approach unravels common climate signals and species-specific responses to environmental change stored in multi-century tree-ring series from the Tibetan Plateau. Geosciences 9(4):151

    Article  Google Scholar 

  30. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  31. Houle D, Moore J, Provencher J (2007) Ice bridges on the St. Lawrence River as an index of winter severity from 1620 to 1910. J Clim 20(4):757–764. https://doi.org/10.1175/JCLI4025.1

    Article  Google Scholar 

  32. Huang R, Zhu H, Liang E et al (2019a) Temperature signals in tree–ring oxygen isotope series from the northern slope of the Himalaya. Earth Planet Sci Lett 506:455–465. https://doi.org/10.1016/j.epsl.2018.11.002

    Article  Google Scholar 

  33. Huang R, Zhu H, Liang E, Liu B, Shi J, Zhang R, Yuan Y. Grießinger J (2019b) A tree ring–based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Clim Dynam 53(5–6):3221–3233. https://doi.org/10.1007/s00382-019-04695-3

    Article  Google Scholar 

  34. Huang R, Zhu H, Liang E, Grießinger J, Dawadi B, Bräuning A (2019c) High-elevation shrub-ring δ18O on the northern slope of the central Himalayas records summer (May–July) temperatures. Palaeogeogr Palaeoclimatol Palaeoecol 524:230–239

    Article  Google Scholar 

  35. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–472

    Article  Google Scholar 

  36. Kapnick S, Delworth T, Ashfaq M, Malyshev S, Milly P (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat Geosci 7(11):834–840. https://doi.org/10.1038/ngeo2269

    Article  Google Scholar 

  37. Keyimu M, Li Z, Liu G et al (2020) Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quat Sci Rev. https://doi.org/10.1016/j.quascirev.2020.1067122020.106712

    Article  Google Scholar 

  38. Khan A, Chen F, Ahmed M, Zafar M (2020) Rainfall reconstruction for the Karakoram region in Pakistan since 1540 CE reveals out-of-phase relationship in rainfall between the southern and northern slopes of the Hindukush-Karakorum-Western Himalaya region. Int J Climatol 40(1):52–62

    Article  Google Scholar 

  39. Kanner LC, Buenning NH, Stott LD, Timmermann A, Noone D (2014) The role of soil processes in δ18O terrestrial climate proxies. Global Biogeochem Cycles 28(3):239–252

    Article  Google Scholar 

  40. Laumer W, Andreu L, Helle G, Schleser G, Wieloch T, Wissel H (2009) A novel approach for the homogenization of cellulose to use micro–amounts for stable isotope analyses. Rapid Commun Mass Spectrom 23(13):1934–1940. https://doi.org/10.1002/rcm.4105

    Article  Google Scholar 

  41. Leavitt SW (2010) Tree-ring C–H–O isotope variability and sampling. Sci Total Environ 408:5244–5253

    Article  Google Scholar 

  42. Li M, Huang L, Yin Z, Shao X (2017) Temperature reconstruction and volcanic eruption signal from tree–ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau. Int J Biometeorol 61(11):2021–2032. https://doi.org/10.1007/s00484-017-1395-0

    Article  Google Scholar 

  43. Li Z, Shi C, Liu Y, Zhang J, Zhang Q, Ma K (2011) Summer mean temperature variation from 1710–2005 inferred from tree–ring data of the Baimang Snow Mountains, northwestern Yunnan, China. Clim Res 47(3):207–218. https://doi.org/10.3354/cr01012

    Article  Google Scholar 

  44. Li Q, Liu Y, Nakatsuka T et al (2020) Delayed warming in Northeast China: Insights from an annual temperature reconstruction based on tree-ring δ18O. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.1414322020.141432

    Article  Google Scholar 

  45. Li Y, Wu X, Huang Y et al (2021) Compensation effect of winter snow on larch growth in Northeast China. Clim Change 164(3):1–17

    Google Scholar 

  46. Lyu L, Zhang Q (2013) Tree–ring based summer minimum temperature reconstruction for the southern edge of the Qinghai–Tibetan Plateau, China. Clim Res 56(2):91–101. https://doi.org/10.3354/cr01144

    Article  Google Scholar 

  47. Lyu L, Büntgen U, Treydte K et al (2019) Tree rings reveal hydroclimatic fingerprints of the Pacific Decadal Oscillation on the Tibetan Plateau. Clim Dyn. https://doi.org/10.1007/s00382-019-04629-z

    Article  Google Scholar 

  48. Liang E, Dawadi B, Pederson N, Piao S, Zhu H, Sigdel S, Chen D (2019) Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree–ring records. Sci Bull 64(14):1018–1023. https://doi.org/10.1016/j.scib.2019.05.002

    Article  Google Scholar 

  49. Liu X, Shao X, Liang E, Chen T, Qin D, An W, Xu G, Sun W, Wang Y (2009) Climatic significance of tree–ring δ18O in the Qilian Mountains, northwestern China and its relationship to atmospheric circulation patterns. Chem Geol 268(1–2):147–154. https://doi.org/10.1016/j.chemgeo.2009.08.005

    Article  Google Scholar 

  50. Liu X, Xu G, Grießinger J, An W, Wang W, Zeng X, Wu G, Qin D (2014) A shift in cloud cover over the southeastern Tibetan Plateau since 1600: evidence from regional tree–ring δ18O and its linkages to tropical oceans. Quat Sci Rev 88:55–68. https://doi.org/10.1016/j.quascirev.2014.01.009

    Article  Google Scholar 

  51. Liu Y, Cobb KM, Song H et al (2017) Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun 8(1):1–8. https://doi.org/10.1038/ncomms15386

    Article  Google Scholar 

  52. Managave S, Shimla P, Yadav RR, Ramesh R, Balakrishnan S (2020) Contrasting centennial-scale climate variability in High Mountain Asia revealed by a tree‐ring oxygen isotope record from Lahaul‐Spiti. Geophys Res Lett. https://doi.org/10.1029/2019GL086170

    Article  Google Scholar 

  53. Mölg T, Maussion F, Schere D (2014) Mid–latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4(1):68–73. https://doi.org/10.1038/nclimate2055

    Article  Google Scholar 

  54. Neukom R, Barboza L, Erb M et al (2019) Consistent multi–decadal variability in global temperature reconstructions and simulations over the Common Era. Nat Geosci 12(8):643–649. https://doi.org/10.1038/s41561-019-0400-0

    Article  Google Scholar 

  55. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308(5722):675–677. https://doi.org/10.1126/science.1107046

    Article  Google Scholar 

  56. Pang Z, Kong Y, Froehlich K, Huang T, Yuan L, Li Z, Wang F (2011) Processes affecting isotopes in precipitation of an arid region. Tellus B 63(3):352–359. https://doi.org/10.1111/j.1600-0889.2011.00532.x

    Article  Google Scholar 

  57. Porter T, Pisaric M, Field R, Kokelj S, Edwards T, Healy R, LeGrande A (2014) Spring–summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree–rings from the Mackenzie Delta, northwestern Canada. Clim Dynam 42(3–4):771–785.

    Article  Google Scholar 

  58. Porter S, Mosley-Thompson E, Thompson L (2019) Ice core δ18O record linked to Western Arctic sea ice variability. J Geophys Res Atmos 124(20):10784–10801. https://doi.org/10.1029/2019JD031023

    Article  Google Scholar 

  59. Sano M, Dimri A, Ramesh R, Xu C, Li Z, Nakatsuka T (2017) Moisture source signals preserved in a 242–year tree–ring δ18O chronology in the western Himalaya. Glob Planet Change 157:73–82. https://doi.org/10.1016/j.gloplacha.2017.08.009

    Article  Google Scholar 

  60. Shi C, Masson-Delmotte V, Risi C et al (2011) Sampling strategy and climatic implications of tree-ring stable isotopes on the southeast Tibetan Plateau. Earth Planet Sci Lett 301(1–2):307–316

    Article  Google Scholar 

  61. Shi F, Rao Z, Cao J, Huang C, Wu D, Yang W, Sun W (2019) Meltwater is the dominant water source controlling α–cellulose δ18O in a vascular–plant–dominated alpine peatland in the Altai Mountains, Central Asia. J Hydrol 572:192–205. https://doi.org/10.1016/j.jhydrol.2019.02.030

    Article  Google Scholar 

  62. Singh J, Singh N, Chauhan P, Yadav R, Bräuning A, Mayr C, Rastogi T (2019) Tree–ring δ18O records of abating June–July monsoon rainfall over the Himalayan region in the last 273 years. Quat Int 532:48–56. https://doi.org/10.1016/j.quaint.2019.09.030

    Article  Google Scholar 

  63. Stoffel M, Khodri M, Corona C et al (2015) Estimates of volcanic–induced cooling in the Northern Hemisphere over the past 1,500 years. Nat Geosci 8(10):784–788. https://doi.org/10.1038/ngeo2526

    Article  Google Scholar 

  64. Stokes M, Smiley T (1968) An introduction to tree–ring dating. University of Arizona Press

    Google Scholar 

  65. Szejner P, Wright W, Babst F, Belmecheri S, Trouet V, Leavitt SW, Ehleringer J, Monson R (2016) Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System. J Geophys Res Biogeosci 121(7):1978–1991. https://doi.org/10.1002/2016JG0034602016JG

    Article  Google Scholar 

  66. Thompson L, Yao T, Davis M et al (2018) Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quat Sci Rev 188:1–14. https://doi.org/10.1016/j.quascirev.2018.03.003

    Article  Google Scholar 

  67. Tian L, Yu W, Schuster P, Wen R, Cai Z, Wang D, Shao L, Cui J, Guo X (2020) Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau. J Hydrol 580:124237. https://doi.org/10.1016/j.jhydrol.2019.124237

    Article  Google Scholar 

  68. Treydte K, Schleser G, Helle G, Frank D, Winiger M, Haug G, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440(7088):1179–1182. https://doi.org/10.1038/nature04743

    Article  Google Scholar 

  69. Viau A, Gajewski K (2009) Reconstructing millennial–scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22(2):316–330. https://doi.org/10.1175/2008JCLI2342.1

    Article  Google Scholar 

  70. Voelker S, Wang S, Dawson T, Roden J, Still C, Longstaffe F, Ayalon A (2019) Tree–ring isotopes adjacent to Lake Superior reveal cold winter anomalies for the Great Lakes region of North America. Sci Rep 9(1):4412. https://doi.org/10.1038/s41598-019-40907-w

    Article  Google Scholar 

  71. Wang Q, Yi S, Sun W (2017) Precipitation-driven glacier changes in the Pamir and Hindu Kush mountains. Geophys Res Lett 44(6):2817–2824. https://doi.org/10.1002/2017GL072646

    Article  Google Scholar 

  72. Wang N, Yao T, Pu J, Zhang Y, Sun W (2006) Climatic and environmental changes over the last millennium recorded in the Malan ice core from the northern Tibetan Plateau. Sci China Earth Sci 49(10):1079–1089. https://doi.org/10.1007/s11430-006-1079-9

    Article  Google Scholar 

  73. Wernicke J, Hochreuther P, Grießinger J, Zhu H, Wang L, Bräuning A (2017) Multi-century humidity reconstructions from the southeastern Tibetan Plateau inferred from tree-ring δ18O. Glob Planet Change 149:26–35

    Article  Google Scholar 

  74. Wieloch T, Helle G, Heinrich I, Voigt M, Schyma P (2011) A novel device for batch–wise isolation of α–cellulose from small–amount wholewood samples. Dendrochronologia 29(2):115–117. https://doi.org/10.1016/j.dendro.2010.08.008

    Article  Google Scholar 

  75. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213

    Article  Google Scholar 

  76. Wu X, Li X, Liu H et al (2019) Uneven winter snow influence on tree growth across temperate China. Glob Change Biol 25(1):144–154. https://doi.org/10.1111/gcb.14464

    Article  Google Scholar 

  77. Xu C, Shi J, Zhao Y, Nakatsuka T, Sano M, Shi S, Guo Z (2019a) Early summer precipitation in the lower Yangtze River basin for AD 1845–2011 based on tree–ring cellulose oxygen isotopes. Clim Dynam 52(3–4):1583–1594. https://doi.org/10.1007/s00382-018-4212-5

    Article  Google Scholar 

  78. Xu C, Zhu H, Wang S, Shi F, An W, Li Z, Sano M, Nakatsuka T, Guo Z (2020) Onset and maturation of Asian summer monsoon precipitation reconstructed from intra-annual tree-ring oxygen isotopes from the southeastern Tibetan Plateau. Quat Res. https://doi.org/10.1017/qua.2020.28

    Article  Google Scholar 

  79. Xu G, Liu X, Trouet V, Treydte K, Wu G, Chen T, Sun W, An W, Wang W, Zeng X, Qin D (2019b) Regional drought shifts (1710–2010) in East Central Asia and linkages with atmospheric circulation recorded in tree–ring δ18O. Clim Dynam 52(1–2):713–727. https://doi.org/10.1007/s00382-018-4215-2

    Article  Google Scholar 

  80. Xu C, Sano M, Dimri AP, Ramesh R, Nakatsuka T, Shi F, Guo Z (2018) Decreasing Indian summer monsoon on the northern Indian sub–continent during the last 180 years: evidence from five tree–ring cellulose oxygen isotope chronologies. Clim Past 14(5):653–664. https://doi.org/10.5194/cp-14-653-2018

    Article  Google Scholar 

  81. Xu C, Shao X, An W et al (2017) Negligible local-factor influences on tree ring cellulose δ18O of Qilian juniper in the Animaqing Mountains of the eastern Tibetan Plateau. Tellus B Chem Phys Meteorol 69(1):1391663

    Article  Google Scholar 

  82. Yao T, Masson–Delmotte V, Gao J et al (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys 51(4):525–548. https://doi.org/10.1002/rog.20023

    Article  Google Scholar 

  83. Yao T, Thompson L, Yang W et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2(9):663–667. https://doi.org/10.1038/nclimate1580

    Article  Google Scholar 

  84. Yin H, Liu H, Linderholm H, Sun Y (2015) Tree ring density–based warm–season temperature reconstruction since AD 1610 in the eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 426:112–120. https://doi.org/10.1016/j.palaeo.2015.03.003

    Article  Google Scholar 

  85. Yu W, Yao T, Thompson LG et al (2020) Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2020.116665

    Article  Google Scholar 

  86. Zafar M, Ahmed M, Rao M, Buckley B, Khan N, Wahab M, Palmer J (2016) Karakorum temperature out of phase with hemispheric trends for the past five centuries. Clim Dyn 46(5–6):1943–1952. https://doi.org/10.1007/s00382-015-2685-z

    Article  Google Scholar 

  87. Zeng X, Liu X, Evans M, Wang W, An W, Xu G, Wu G (2016) Seasonal incursion of Indian Monsoon humidity and precipitation into the southeastern Qinghai–Tibetan Plateau inferred from tree ring δ18O values with intra–seasonal resolution. Earth Planet Sci Lett 443:9–19. https://doi.org/10.1016/j.epsl.2016.03.011

    Article  Google Scholar 

  88. Zhang Q, Qiu H (2007) A millennium–long tree–ring chronology of Sabina przewalskii on northeastern Qinghai–Tibetan Plateau. Dendrochronologia 24(2–3):91–95. https://doi.org/10.1016/j.dendro.2006.10.009

    Article  Google Scholar 

  89. Zhang X, Manzanedo RD, D’Orangeville L et al (2019) Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Glob Change Biol 25(10):3462–3471

    Article  Google Scholar 

  90. Zhu H, Zheng Y, Shao X, Liu X, Xu Y, Liang E (2008) Millennial temperature reconstruction based on tree–ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chin Sci Bull 53(24):3914–3920. https://doi.org/10.1007/s11434-008-0400-8

    Article  Google Scholar 

  91. Zhu H, Shao X, Yin Z, Xu P, Xu Y, Tian H (2011) August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 305(1–4):84–92. https://doi.org/10.1016/j.palaeo.2011.02.017

    Article  Google Scholar 

  92. Zuo M, Zhou T, Man W (2019) Hydroclimate responses over global monsoon regions following volcanic eruptions at different latitudes. J Clim. https://doi.org/10.1175/JCLI-D-18-0707.1

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 42007407, 41571201, 41661144040, 41771240, 41661144025), CAS Special Project on International Cooperation along the Belt and Road Initiative (No. 131C11KYSB20160061), West Light Foundation of the Chinese Academy of Sciences to Haifeng Zhu, and China Postdoctoral Science Foundation to Ru Huang (No. 2019M660814). Tree-ring isotope and winter-spring reconstruction data in the present study will be deposited at National Tibetan Plateau Data Center. A special acknowledgement was expressed to China-Pakistan Joint Research Center on Earth Sciences that supported the implementation of this study. The R code to reproduce the figures will be available upon reasonable request to the corresponding author (zhuhf@itpcas.ac.cn). We are grateful to Iris Burchardt, Roswitha Höfner-Stich (Friedrich-Alexander University of Erlangen-Nürnberg, Germany) for support and help during isotope analyses. We also deeply appreciate Lonnie G. Thompson (The Ohio State University, USA), Jan Esper (Gutenberg University, Mainz, Germany) and Feng Chen (Yunnan University, China) for kindly sharing their data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haifeng Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Huang, R., Asad, F. et al. Unexpected climate variability inferred from a 380-year tree-ring earlywood oxygen isotope record in the Karakoram, Northern Pakistan. Clim Dyn 57, 701–715 (2021). https://doi.org/10.1007/s00382-021-05736-6

Download citation

Keywords

  • Oxygen isotopes
  • Winter‐spring temperature reconstruction
  • Little Ice Age
  • Tree‐rings
  • Karakoram