Skip to main content

Potential predictability of the MJO during easterly and westerly phases of the QBO

Abstract

The potential predictability of the Madden–Julian Oscillation (MJO) in boreal winter (November–February) is investigated using observational data for the period of 1979–2016. For various MJO indices, nonlinear local Lyapunov exponents are computed to quantify the MJO predictability under the easterly and westerly phases of the Quasi-Biennial Oscillation (easterly: EQBO and westerly: WQBO). All MJO indices exhibit higher predictability during EQBO winters than during WQBO winters. Excluding strong ENSO years from EQBO and WQBO winters has a limited impact on MJO predictability. The highest potential predictability of 43 days during EQBO winters and 37 days during WQBO winters is found for the MJO index obtained from bandpass-filtered (30–80 days) outgoing longwave radiation and wind data. In contrast, the potential predictability of the MJO from the real-time multivariate MJO index is 21 days during EQBO winters and 13 days during WQBO winters. The longer persistence and less disorganization of the MJO during the EQBO winters lead to the higher predictability for EQBO winters, as compared with that for WQBO winters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Dalcher A, Kalnay E (1987) Error growth and predictability in operational ECMWF forecasts. Tellus A 39A(5):474–491

    Article  Google Scholar 

  2. Dee et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Met Soc 137:535–597

    Article  Google Scholar 

  3. Ding RQ, Li JP, Seo KH (2010) Predictability of the Madden–Julian oscillation estimated using observational data. Mon Weather Rev 138:1004–1013. https://doi.org/10.1175/2009MWR3082.1

    Article  Google Scholar 

  4. Ding RQ, Li JP, Seo KH (2011) Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon Weather Rev 139:2421–2438. https://doi.org/10.1175/2011MWR3571.1

    Article  Google Scholar 

  5. Kiladis GN, Dias J, Straub KH, Wheeler MC, Tulich SN, Kikuchi K, Weickmann KM, Ventrice MJ (2014) A comparison of OLR and circulation-based indices for tracking the MJO. Mon Weather Rev 142:1697–1715. https://doi.org/10.1175/MWR-D-13-00301.1

    Article  Google Scholar 

  6. Kim H, Richter JH, Martin Z (2019) Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J Geophys Res Atmos 124:12655–12666. https://doi.org/10.1029/2019JD031416

    Article  Google Scholar 

  7. Lee HJ, Seo KH (2019) Impact of the Madden-Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-47150-3

    Article  Google Scholar 

  8. Li J, Ding RQ (2013) Temporal–spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int J Climatol 33:1936–1947. https://doi.org/10.1002/joc.3562

    Article  Google Scholar 

  9. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277

    Google Scholar 

  10. Lim Y, Son SW, Marshall AG, Hendon HH, Seo KH (2019) Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Clim Dyn 53:1681–1695. https://doi.org/10.1007/s00382-019-04719-y

    Article  Google Scholar 

  11. Liu C, Tian B, Li KF, Manney GL, Livesey NJ, Yung YL, Waliser DE (2014) Northern Hemisphere mid‐winter vortex‐displacement and vortex‐split stratospheric sudden warmings: influence of the madden‐julian oscillation and quasi‐biennial oscillation. J Geophys Res Atmos 119(12):12599–12620. https://doi.org/10.1002/2014JD021876

  12. Lu D, Ding RQ, Li J (2020) The predictability limit of the amplitude and phase of the Madden-Julian oscillation. Atmos Sci Lett 21:e968. https://doi.org/10.1002/asl.968

    Article  Google Scholar 

  13. Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708. https://doi.org/10.1175/1520-0469(1971)028%3c0702:DOADOI%3e2.0.CO;2

    Article  Google Scholar 

  14. Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123. https://doi.org/10.1175/1520-0469(1972)029%3c1109:DOGSCC%3e2.0.CO;2

    Article  Google Scholar 

  15. Maharaj EA, Wheeler MC (2005) Forecasting an index of the madden-oscillation. Int J Climatol 25(12):1611–1618

    Article  Google Scholar 

  16. Marshall AG, Hendon HH, Son SW, Lim Y (2017) Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Clim Dyn 49:1365–1377. https://doi.org/10.1007/s00382-016-3392-0

  17. Matthews AJ, Hoskins BJ, Masutani M (2004) The global response to tropical heating in the Madden–Julian oscillation during Northern winter. Q J R Meteor Soc 130:1991–2011. https://doi.org/10.1256/qj.02.123

    Article  Google Scholar 

  18. Nishimoto E, Yoden S (2017) Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J Atmos Sci 74:1105–1125. https://doi.org/10.1175/JAS-D-16-0205.1

  19. Roundy PE, Schreck CJ III, Janiga MA (2009) Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon Weather Rev 137(1):469–478

    Article  Google Scholar 

  20. Seo KH, Lee HJ (2017) Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J Atmos Sci 74:1767–1781. https://doi.org/10.1175/JAS-D-16-0343.1

    Article  Google Scholar 

  21. Seo KH, Son SW (2012) The global atmospheric circulation response to tropical diabatic heating associated with the Madden-Julian oscillation during northern winter. J Atmos Sci 69:79–96. https://doi.org/10.1175/2011JAS3686.1

    Article  Google Scholar 

  22. Seo KH, Schemm JKE, Wang W, Kumar A (2007) The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): the effect of sea surface temperature. Mon Weather Rev 135:1807–1827. https://doi.org/10.1175/MWR3369.1

    Article  Google Scholar 

  23. Seo KH, Wang W, Gottschalck J, Zhang Q, Schemm JKE, Higgins WR, Kumar A (2009) Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J Clim 22:2372–2388. https://doi.org/10.1175/2008JCLI2421.1

    Article  Google Scholar 

  24. Son SW, Lim Y, Yoo C, Hendon HH, Kim J (2017) Stratospheric control of Madden–Julian oscillation. J Clim 30:1909–1922. https://doi.org/10.1175/JCLI-D-16-0620.1

  25. Song L, Wu R (2020) Modulation of the QBO on the MJO-related surface air temperature anomalies over Eurasia during boreal winter. Clim Dyn 54:2419–2431. https://doi.org/10.1007/s00382-020-05122-8

    Article  Google Scholar 

  26. Van den Dool HM, Saha S (1990) Frequency dependence in forecast skill. Mon weather Rev 118:128–137. https://doi.org/10.1175/1520-0493(1990)118%3c0128:FDIFS%3e2.0.CO;2

    Article  Google Scholar 

  27. Vitart F (2017) Madden–Julian oscillation prediction and teleconnections in the S2S database. Q J R Meteor Soc 143:2210–2220. https://doi.org/10.1002/qj.3079

    Article  Google Scholar 

  28. Wang S, Ma D, Sobel AH, Tippett MK (2018) Propagation characteristics of BSISO indices. Geophys Res Lett 45:9934–9943. https://doi.org/10.1029/2018GL078321

    Article  Google Scholar 

  29. Wang S, Sobel AH, Tippett MK, Vitart F (2019a) Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier. Clim Dyn 52:6015–6031. https://doi.org/10.1007/s00382-018-4492-9

    Article  Google Scholar 

  30. Wang S, Tippett MK, Sobel AH, Martin ZK, Vitart F (2019b) Impact of the QBO on prediction and predictability of the MJO convection. J Geophys Res Atmos 124:1766–11782. https://doi.org/10.1029/2019JD030575

    Article  Google Scholar 

  31. Wheeler M, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. https://doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2

    Article  Google Scholar 

  32. Yoo C, Son SW (2016) Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys Res Lett 43:1392–1398. https://doi.org/10.1002/2016GL067762

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2020R1A2C2009414) and Korea Meteorological Administration (KMA) Research and Development Program under Grant KMI 2018–01012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyong-Hwan Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 464 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mengist, C.K., Seo, KH., Ding, R. et al. Potential predictability of the MJO during easterly and westerly phases of the QBO. Clim Dyn 57, 717–726 (2021). https://doi.org/10.1007/s00382-021-05733-9

Download citation

Keywords

  • MJO indices
  • MJO potential predictability
  • EQBO and WQBO winters
  • Nonlinear local Lyapunov exponent