Skip to main content

Advertisement

Log in

A modified gas-phase scheme for advanced regional climate modelling with RegCM4

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climate models in the past decades have been developed to such an extent to include atmospheric chemistry as part of their climate simulations. This is necessary for providing policy-makers and other stakeholders with reliable atmospheric projections as well as information about changes in chemical species as a consequence of climate change. The regional climate model (RCM), RegCM4 is a community model which contains only one gas-phase mechanism module (CBM-Z) that includes the formation, deposition, and transport of a number of volatile organic compounds (VOCs). In this paper, the CB6-C, a new gas-phase mechanism module, is combined with RegCM4 to produce a larger suite of VOCs and chemical mechanisms for important anthropogenic and biogenic species, most notably benzene, terpenes, acetylene and their corresponding oxidation products. In order to evaluate this new module, climatologies of the CB6-C and CBM-Z simulations are compared to gridded and station data. The results reveal the two schemes to be similar with some improvement of surface carbon monoxide and tropospheric ozone in the CB6-C. However, organic products were found to be under-predicted for both schemes, suggesting the need of more development in the implementation of atmospheric chemistry in RegCM4. Despite its limitations, the input conditions (emissions and boundary conditions) are easy to modify, making the new gas-phase scheme an important advancement in the modelling of atmospheric chemistry within a RCM, as it provides a pathway for new research that may eventually help health studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219. https://doi.org/10.1016/S1352-2310(03)00391-1. https://linkinghub.elsevier.com/retrieve/pii/S1352231003003911

  • Baklanov A, Schlünzen K, Suppan P, Baldasano J, Brunner D, Aksoyoglu S, Carmichael G, Douros J, Flemming J, Forkel R, Galmarini S, Gauss M, Grell G, Hirtl M, Joffre S, Jorba O, Kaas E, Kaasik M, Kallos G, Kong X, Korsholm U, Kurganskiy A, Kushta J, Lohmann U, Mahura A, Manders-Groot A, Maurizi A, Moussiopoulos N, Rao ST, Savage N, Seigneur C, Sokhi RS, Solazzo E, Solomos S, Sørensen B, Tsegas G, Vignati E, Vogel B, Zhang Y (2014) Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos Chem Phys 14(1):317–398. https://doi.org/10.5194/acp-14-317-2014. https://www.atmos-chem-phys.net/14/317/2014/

  • Baltaretu CO, Lichtman EI, Hadler AB, Elrod MJ (2009) Primary atmospheric oxidation mechanism for toluene. J Phys Chem A 113(1):221–230

    Article  Google Scholar 

  • Barletta B, Meinardi S, Simpson IJ, Khwaja HA, Blake DR, Rowland FS (2002) Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmos Environ 36:3429–3443

    Article  Google Scholar 

  • Beauregard D (1993) Locating and estimating air emissions from sources of toluene. Tech. rep., TRC Environmental Corporation, North Carolina

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY, Bala G, Bellouin N, Benedetti A, Bony S, Caldeira K, Genio AD, Facchini MC, Flanner M, Ghan S, Granier C, Hoose C, Jones A, Koike M, Kravitz B, Laken B, Lebsock M, Mahowald N, Myhre G, O’Dowd C, Robock A, Samset B, Schmidt H, Schulz M, Stephens G, Stier P, Storelvmo T, Winker D, Wyant M (2013) Clouds and aerosols. In: Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis, IPCC, Geneva, Switzerland, chap 7

  • Carlton AG, Pinder RW, Bhave PV, Pouliot GA (2010) To what extent can biogenic SOA be controlled?. Environ Sci Technol 44(9):3376–3380. https://doi.org/10.1021/es903506b. https://pubs.acs.org/doi/10.1021/es903506b

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quéré CL, Myneni R, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Climate change 2013 - the physical science basis, IPCC, Geneva, Switzerland, chap 6, pp 465–570. https://doi.org/10.1017/CBO9781107415324.015. arXiv:1011.1669v3

  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303(5661):1173–1176. https://doi.org/10.1126/science.1092805. http://www.ncbi.nlm.nih.gov/pubmed/14976309

  • Damian V, Sandu A, Damian M, Potra F, Carmichael GR (2002) The kinetic preprocessor KPP-a software environment for solving chemical kinetics. Comput Chem Eng 26(11):1567–1579. https://doi.org/10.1016/S0098-1354(02)00128-X

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, Dias PLdS, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, chap 7

  • Dunker AM, Koo B, Yarwood G (2016) Ozone sensitivity to isoprene chemistry and emissions and anthropogenic emissions in central California. Atmos Environ 145:326–337. https://doi.org/10.1016/j.atmosenv.2016.09.048. https://linkinghub.elsevier.com/retrieve/pii/S1352231016307567

  • Eddingsaas NC, Loza CL, Yee LD, Seinfeld JH, Wennberg PO (2012) \(\alpha\)-pinene photooxidation under controlled chemical conditions - part 1: gas-phase composition in low- and high-NOx environments. Atmos Chem Phys 12(14):6489–6504. https://doi.org/10.5194/acp-12-6489-2012. http://www.atmos-chem-phys.net/12/6489/2012/

  • Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M, Berntsen T, Bey I, Brasseur G, Buja L, Collins WJ, Daniel J, Demore WB, Derek N, Dickerson R, Etheridge D, Feichter J, Fraser P, Friedl R, Fuglestvedt J, Gauss M, Grenfell L, Grübler A, Harris N, Hauglustaine D, Horowitz L, Jackman C, Jacob D, Jaeglé L, Jain A, Kanakidou M, Karlsdottir S, Ko M, Kurylo M, Lawrence M, Logan JA, Manning M, Mauzerall D, Mcconnell J, Mickley L, Montzka S, Müller JF, Olivier J, Pickering K, Pitari G, Roelofs GJ, Rogers H, Rognerud B, Smith S, Solomon S, Staehelin J, Steele P, Stevenson D, Sundet J, Thompson A, Weele MV, Kuhlmann RV, Wang Y, Weisenstein D, Wigley T, Wild O, Wuebbles D, Yantosca R (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) Climate change 2001: the scientific basis, University Press, New York, chap 4

  • Emmons LK, Walters S, Hess PG, Lamarque JF, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2009) Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev Discuss 2(2):1157–1213. https://doi.org/10.5194/gmdd-2-1157-2009. http://www.geosci-model-dev-discuss.net/2/1157/2009/

  • Environ (2010) Final report development, evaluation and testing of version 6 of the carbon bond chemical mechanism (CB6), Work Order No. 582-7-84005-FY10-26. Tech. rep

  • Environ (2014) CAMx user’s guide comprehensive air quality model with extensions: version 6.1. Tech. Rep. April, ENVIRON International Corporation, Novato, California. http://www.camx.com/files/camxusersguide_v6-10.pdf

  • Fan J, Zhang R (2004) Atmospheric oxidation mechanism of isoprene. Environ Chem 1(3):140. https://doi.org/10.1071/EN04045. http://www.publish.csiro.au/?paper=EN04045

  • Fry MM, Naik V, West JJ, Schwarzkopf MD, Fiore AM, Collins WJ, Dentener FJ, Shindell DT, Atherton C, Bergmann D, Duncan BN, Hess P, MacKenzie IA, Marmer E, Schultz MG, Szopa S, Wild O, Zeng G (2012) The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. J Geophys Res Atmos 117(D7). https://doi.org/10.1029/2011JD017134. http://doi.wiley.com/10.1029/2011JD017134

  • Galano A, Ruiz-Suárez LG, Vivier-Bunge A (2008) On the mechanism of the OH initiated oxidation of acetylene in the presence of O2 and NOx. Theor Chem Acc 121(5–6):219–225. https://doi.org/10.1007/s00214-008-0467-y. http://link.springer.com/10.1007/s00214-008-0467-y

  • Giorgi F, Bi X, Qian Y (2003) Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model. Clim Change 58:345–376

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Güttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018. http://www.int-res.com/abstracts/cr/v52/p7-29/

  • Goldberg DL, Vinciguerra TP, Anderson DC, Hembeck L, Canty TP, Ehrman SH, Martins DK, Stauffer RM, Thompson AM, Salawitch RJ, Dickerson RR (2016) CAMx ozone source attribution in the eastern United States using guidance from observations during DISCOVER-AQ Maryland. Geophys Res Lett 43(5):2249–2258. https://doi.org/10.1002/2015GL067332. http://doi.wiley.com/10.1002/2015GL067332

  • Graedel TE, Crutzen PJ (1993) Atmospheric change: an earth system perspective. W. H. Freeman and Company, New York

    Google Scholar 

  • Haan DOD, Corrigan AL, Smith KW, Stroik DR, Turley JJ, Lee FE, Tolbert MA, Jimenez JL, Cordova KE, Ferrell GR (2009) Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ Sci Technol 43(8):2818–2824. https://doi.org/10.1021/es803534f. http://pubs.acs.org/doi/abs/10.1021/es803534f

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):D20119. https://doi.org/10.1029/2008JD010201. http://doi.wiley.com/10.1029/2008JD010201

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(November):513–543

    Article  Google Scholar 

  • Heiden AC, Kobel K, Komenda M, Koppmann R, Shao M, Wildt J (1999) Tolene emissions from plants. Geophys Res Lett 26(9):1283–1286

    Article  Google Scholar 

  • Hellén H, Tykkä T, Hakola H (2012) Importance of monoterpenes and isoprene in urban air in northern Europe. Atmos Environ 59:59–66. https://doi.org/10.1016/j.atmosenv.2012.04.049

    Article  Google Scholar 

  • Hoppel W, Fitzgerald J, Frick G, Caffrey P, Pasternack L, Hegg D, Gao S, Leaitch R, Shantz N, Cantrell C, Albrechcinski T, Ambrusko J, Sullivan W (2001) Particle formation and growth from ozonolysis of \(\alpha\)-pinene. J Geophys Res 106(D21):27603–27618

    Article  Google Scholar 

  • Inness A, Ades M, Agustí-Panareda A, Barré J, Benedictow A, Blechschmidt AM, Dominguez JJ, Engelen R, Eskes H, Flemming J, Huijnen V, Jones L, Kipling Z, Massart S, Parrington M, Peuch VH, Razinger M, Remy S, Schulz M, Suttie M (2019) The CAMS reanalysis of atmospheric composition. Atmos Chem Phys 19(6):3515–3556. https://doi.org/10.5194/acp-19-3515-2019. https://www.atmos-chem-phys.net/19/3515/2019/

  • Isaksen I, Granier C, Myhre G, Berntsen T, Dalsøren S, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Cox T, Eyring V, Fowler D, Fuzzi S, Jöckel P, Laj P, Lohmann U, Maione M, Monks P, Prevot A, Raes F, Richter A, Rognerud B, Schulz M, Shindell D, Stevenson D, Storelvmo T, Wang WC, van Weele M, Wild M, Wuebbles D (2009) Atmospheric composition change: climate-chemistry interactions. Atmos Environ 43(33):5138–5192. https://doi.org/10.1016/j.atmosenv.2009.08.003. https://linkinghub.elsevier.com/retrieve/pii/S1352231009006943

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051. https://linkinghub.elsevier.com/retrieve/pii/S1352231008008571

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578. https://doi.org/10.1007/s10113-013-0499-2. https://doi.org/10.1007/s10113-013-0499-2

  • Jaoui M, Kamens RM (2003) Gaseous and particulate oxidation products analysis of a mixture of \(\alpha\)-pinene + \(\beta\)-pinene/O3/air in the absence of light and \(\alpha\)-pinene + \(\beta\)-pinene/NOx/air in the presence of natural sunlight. J Atmos Chem 44(1997):259–297

    Article  Google Scholar 

  • Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166(1):17–26. https://doi.org/10.1016/j.jhazmat.2008.11.048

    Article  Google Scholar 

  • Kiehl JT, Briegleb BP (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260(5106):311–4. https://doi.org/10.1126/science.260.5106.311

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, Van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039. https://doi.org/10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Lohmann U, Feichter J, Penner J, Leaitch R (2000) Indirect effect of sulfate and carbonaceous aerosols a mechanistic treatment. J Geophys Res 105(D10):12193–12206

    Article  Google Scholar 

  • Madronich S, Flocke S (1999) The role of solar radiation in atmospheric chemistry. In: Boule P (ed) Handbook of environmental chemistry, January 1998, pp 1–26. https://doi.org/10.1007/978-3-540-69044-3_1. http://link.springer.com/10.1007/978-3-540-69044-3_1

  • Martín-Reviejo M, Wirtz K (2005) Is benzene a precursor for secondary organic aerosol? Environ Sci Technol 39(4):1045–54

    Article  Google Scholar 

  • Marvin MR, Wolfe GM, Salawitch RJ, Canty TP, Roberts SJ, Travis KR, Aikin KC, de Gouw JA, Graus M, Hanisco TF, Holloway JS, Hübler G, Kaiser J, Keutsch FN, Peischl J, Pollack IB, Roberts JM, Ryerson TB, Veres PR, Warneke C (2017) Impact of evolving isoprene mechanisms on simulated formaldehyde: an inter-comparison supported by in situ observations from SENEX. Atmos Environ 164:325–336. https://doi.org/10.1016/j.atmosenv.2017.05.049. https://linkinghub.elsevier.com/retrieve/pii/S1352231017303618

  • Monks PS (2007) Principles of environmental chemistry. In: Harrison RM (ed) Chemistry in the atmosphere, The Royal Society of Chemistry, chap 2, pp 8–79. https://doi.org/10.1039/9781847557780-00008. http://dx.doi.org/10.1039/9781847557780-00008

  • Monks P, Granier C, Fuzzi S, Stohl A, Williams M, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I, Blake N, Blake R, Carslaw K, Cooper O, Dentener F, Fowler D, Fragkou E, Frost G, Generoso S, Ginoux P, Grewe V, Guenther A, Hansson H, Henne S, Hjorth J, Hofzumahaus A, Huntrieser H, Isaksen I, Jenkin M, Kaiser J, Kanakidou M, Klimont Z, Kulmala M, Laj P, Lawrence M, Lee J, Liousse C, Maione M, McFiggans G, Metzger A, Mieville A, Moussiopoulos N, Orlando J, O’Dowd C, Palmer P, Parrish D, Petzold A, Platt U, Pöschl U, Prévôt A, Reeves C, Reimann S, Rudich Y, Sellegri K, Steinbrecher R, Simpson D, ten Brink H, Theloke J, van der Werf G, Vautard R, Vestreng V, Vlachokostas C, von Glasow R (2009) Atmospheric composition change - global and regional air quality. Atmos Environ 43(33):5268–5350. https://doi.org/10.1016/j.atmosenv.2009.08.021. https://linkinghub.elsevier.com/retrieve/pii/S1352231009007109

  • Myhre G, Shindell D, Breon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendozo B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H, Boucher O, Dalsoren SB, Daniel JS, Forster P, Granier C, Haigh J, Hodnebrog O, Kaplan JO, O’Neill BC, Nielsen CJ, Marston G, Peters GP, Pongratz J, Prather M, Ramaswamy V, Roth R, Rotstayn L, Smith SJ, Stevenson D, Vernier JP, Young P, Wild O, Aamaas B (2013) Anthropogenic and natural radiative forcing. In: Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis, IPCC, Geneva, Switzerland, chap 8

  • O’Donnell D, Tsigaridis K, Feichter J (2011) Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos Chem Phys 11(16):8635–8659. https://doi.org/10.5194/acp-11-8635-2011

    Article  Google Scholar 

  • Peckham SE, Grell GA, McKeen SA, Ahmadov R, Barth M, Pfister G, Wiedinmyer C, Fast JD, Gustafson WI, Ghan SJ, Zaveri R, Easter RC, Barnard J, Chapman E, Hewson M, Schmitz R, Salzmann M, Beck V, Freitas SR (2013) WRF/Chem version 3.5 user’s guide. Tech. Rep. July, University Corporation for Atmospheric Research, Boulder, Colorado

  • Ruiz LH, Yarwood G (2013) Interactions between organic aerosol and NOy: influence on oxidant production. Prepared for the Texas AQRP (Project 12-012). Tech. rep., The University of Texas at Austin

  • Sandu A, Sander R (2006) Technical note: simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos Chem Phys 6(5):187–195. https://doi.org/10.5194/acpd-5-8689-2005

    Article  Google Scholar 

  • Shalaby A, Zakey AS, Tawfik AB, Solmon F, Giorgi F, Stordal F, Sillman S, Zaveri RA, Steiner AL (2012) Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci Model Dev 5(3):741–760. https://doi.org/10.5194/gmd-5-741-2012

    Article  Google Scholar 

  • Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33(12):1821–1845. https://doi.org/10.1016/S1352-2310(98)00345-8. https://linkinghub.elsevier.com/retrieve/pii/S1352231098003458

  • Steiner A, Tawfik A, Shalaby A, Zakey A, Abdel-Wahab M, Salah Z, Solmon F, Sillman S, Zaveri R (2014) Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region. Clim Res 59(3):207–228. https://doi.org/10.3354/cr01211

    Article  Google Scholar 

  • Stephens ER, Burleson FR (1969) Distribution of light hydrocarbons in ambient air. J Air Pollut Control Assoc 19(12):929–939. https://doi.org/10.1080/00022470.1969.10469359

    Article  Google Scholar 

  • Tie X, Madronich S, Walters S, Zhang R, Rasch P, Collins W (2003) Effect of clouds on photolysis and oxidants in the troposphere. J Geophys Res 108(D20):4642. https://doi.org/10.1029/2003JD003659. http://doi.wiley.com/10.1029/2003JD003659

  • Unger N (2014) On the role of plant volatiles in anthropogenic global climate change. Geophys Res Lett 41(23):8563–8569. https://doi.org/10.1002/2014GL061616. https://onlinelibrary.wiley.com/doi/abs/10.1002/2014GL061616

  • Volkamer R, Klotz B, Barnes I, Imamura T, Wirtz K, Washida N, Becker KH, Platt U (2002) OH-initiated oxidation of benzene. Part I. Phenol formation under atmospheric conditions. Phys Chem Chem Phys 4(9):1598–1610. https://doi.org/10.1039/b108747a. http://xlink.rsc.org/?DOI=b108747a

  • Volkamer R, Ziemann PJ, Molina MJ (2009) Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos Chem Phys 9(6):1907–1928. https://doi.org/10.5194/acp-9-1907-2009. http://www.atmos-chem-phys.net/9/1907/2009/

  • Whitby RA, Altwicker ER (1978) Acetylene in the atmosphere: sources, representative ambient concentrations and ratios to other hydrocarbons. Atmos Environ 12:1289–1296

    Article  Google Scholar 

  • WHO (2017) Evolution of WHO air quality guidelines: past, present and future. Tech. rep, WHO Regional Office for Europe, Copenhagen

  • Wolfe GM, Crounse JD, Parrish JD, St Clair JM, Beaver MR, Paulot F, Yoon TP, Wennberg PO, Keutsch FN (2012) Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys Chem Chem Phys 14(20):7276. https://doi.org/10.1039/c2cp40388a. http://xlink.rsc.org/?DOI=c2cp40388a

  • Yarwood G, Gookyoung H, Carter WP, Whitten GZ (2012) Environmental chamber experiments to evaluate NOx sinks and recycling in atmospheric chemical mechanisms AQRP Project 10-042. Tech. rep., The University of Texas at Austin. http://aqrp.ceer.utexas.edu/projectinfo%5C10-042%5C10-042 Final Report.pdf

  • Yin C, Wang T, Solmon F, Mallet M, Jiang F, Li S, Zhuang B (2015) Assessment of direct radiative forcing due to secondary organic aerosol over China with a regional climate model. Tellus B 67:1–19. https://doi.org/10.3402/tellusb.v67.24634. http://www.tellusb.net/index.php/tellusb/article/view/24634

  • Zaveri RA, Peters LK (1999) A new lumped structure photochemical mechanism for large-scale applications. J Geophys Res 104(D23):30387. https://doi.org/10.1029/1999JD900876

    Article  Google Scholar 

  • Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov A (2012) Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos Environ 60:656–676. https://doi.org/10.1016/j.atmosenv.2012.02.041. https://linkinghub.elsevier.com/retrieve/pii/S1352231012001562

  • Zhao J, Zhang R, Misawa K, Shibuya K (2005) Experimental product study of the OH-initiated oxidation of m-xylene. J Photochem Photobiol A Chem 176(1–3):199–207. https://doi.org/10.1016/j.jphotochem.2005.07.013. http://linkinghub.elsevier.com/retrieve/pii/S1010603005003680

Download references

Acknowledgements

This project was carried out using computational facilities procured through the European Regional Development Fund, Project ERDF-080 ‘A supercomputing laboratory for the University of Malta’ (http://www.um.edu.mt/research/scienceeng/erdf_080), as well as the supercomputer cluster ‘Argo’, at the Abdus Salam International Centre for Theoretical Physics (http://argo.ictp.it/). Funding for this project was provided to James Ciarlo` in-part by the Malta Government Scholarship Scheme (Grant No.: MEDE541/2013/39). Susanna Strada has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No.: 791413 (project IDIOM2). The authors would like to thank Graziano Giuliani and Andrea Pozzer for the support and useful discussions in relation to the chemistry models, reference data, and the RegCM code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ciarlo`.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1877 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciarlo`, J.M., Aquilina, N.J., Strada, S. et al. A modified gas-phase scheme for advanced regional climate modelling with RegCM4. Clim Dyn 57, 489–502 (2021). https://doi.org/10.1007/s00382-021-05722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05722-y

Keywords

Navigation