Influence of aerosols on clouds, precipitation and freezing level height over the foothills of the Himalayas during the Indian summer monsoon

Abstract

Long term (2002–2017) satellite-retrieved and reanalysis datasets are utilized to assess the daily and interannual timescale impact of aerosol loadings on the cloud properties, precipitation amounts, and freezing level height over the southern slopes and adjacent foothills (SSFH) of the Himalayas during the Indian summer monsoon season. Daily timescale composites during polluted days suggest the development of widespread deeper clouds and higher precipitation amounts. Significant efforts were carried out to isolate the role of weather forcing in the daily timescale from the outlined aerosol-cloud-precipitation relationship by using the environmental relative humidity (RH) and vertical velocity (ω). Results provide strong evidence suggesting that regardless of weather pattern forcing, the direct association of aerosol optical depth (AOD) with precipitation, and cloud properties remained consistent for day-to-day timescales. The spatial correlation analyses of daily AOD with cloud properties and precipitation during both wet and dry monsoonal years indicate a positive association of higher aerosol concentration with cloud vertical development and precipitation. The 0 °C isotherm altitude is found to be higher by 136.82 ± 18.82 m (mean ± standard deviation) during the polluted days in comparison to relatively cleaner environments, which can be crucial for the change in snow line and melting of glaciers impacting the hydroclimate of the Himalayas. Our results suggest that the influence of aerosol on modulating the regional precipitation and freezing level height can be significant for the hydroclimate of the Himalayan region in a daily to interannual timescale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Altaratz O, Bar-Or RZ, Wollner U, Koren I (2013) Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environ Res Lett 8:034025. https://doi.org/10.1088/1748-9326/8/3/034025

    Article  Google Scholar 

  2. Andreae MO (2009) Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos Chem Phys 9:543–556. https://doi.org/10.5194/acp-9-543-2009

    Article  Google Scholar 

  3. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342. https://doi.org/10.1126/science.1092779

    Article  Google Scholar 

  4. Babu SS, Manoj MR, Moorthy KK, Gogoi MM, Nair VS, Kompalli SK, Satheesh SK, Niranjan K, Ramagopal K, Bhuyan PK, Singh D (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J Geophys Res Atmos 118:11,794-11,806. https://doi.org/10.1002/2013JD020507

    Article  Google Scholar 

  5. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505. https://doi.org/10.1126/science.1204994

    Article  Google Scholar 

  6. Bollasina MA, Ming Y, Ramaswamy V, Schwarzkopf MD, Naik V (2014) Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon. Geophys Res Lett 41:680–687. https://doi.org/10.1002/2013GL058183

    Article  Google Scholar 

  7. Boucher O, Quaas J (2013) Water vapour affects both rain and aerosol optical depth. Nat Geosci 6:4–5. https://doi.org/10.1038/ngeo1692

    Article  Google Scholar 

  8. Bradley RS, Keimig FT, Diaz HF, Hardy DR (2009) Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36:L17701. https://doi.org/10.1029/2009GL037712

    Article  Google Scholar 

  9. Chen Q, Koren I, Altaratz O, Heiblum RH, Dagan G, Pinot L (2017) How do changes in warm-phase microphysics affect deep convective clouds? Atmos Chem Phys 17:9585–9598. https://doi.org/10.5194/acp-17-9585-2017

    Article  Google Scholar 

  10. Choudhury G, Tyagi B, Singh J, Sarangi C, Tripathi SN (2019) Aerosol-orography-precipitation—a critical assessment. Atmos Env 214:116831. https://doi.org/10.1016/j.atmosenv.2019.116831

    Article  Google Scholar 

  11. Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7:17347. https://doi.org/10.1038/s41598-017-17599-1

    Article  Google Scholar 

  12. Davenport FV, Herrera-Estrada JE, Burke M, Diffenbaugh NS (2020) Flood size increases nonlinearly across the western United States in response to lower snow-precipitation ratios. Wat Resour Res 56:e2019WR025571. https://doi.org/10.1029/2019WR025571

    Article  Google Scholar 

  13. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Devi JJ, Tripathi SN, Gupta T, Singh BN, Gopalkrishnan V, Dey S (2011) Observation-based 3-D view of aerosol radiative properties over Indian Continental Tropical Convergence Zone: implications to regional climate. Tellus B Chem Phys Meteorol 63:971–989. https://doi.org/10.1111/j.1600-0889.2011.00580.x

    Article  Google Scholar 

  15. Diaz HF, Eischeid JK, Duncan C, Bradley RS (2003) Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 Years. Clim Change 59:33–52. https://doi.org/10.1023/A:1024460010140

    Article  Google Scholar 

  16. Fan J, Zhang R, Li G, Tao W-K (2007) Effects of aerosols and relative humidity on cumulus clouds. J Geophys Res Atmos. https://doi.org/10.1029/2006JD008136

    Article  Google Scholar 

  17. Fan J, Leung LR, Rosenfeld D, Chen Q, Li Z, Zhang J, Yan H (2013) Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. PNAS 110:E4581–E4590. https://doi.org/10.1073/pnas.1316830110

    Article  Google Scholar 

  18. Fan J, Wang Y, Rosenfeld D, Liu X (2016) Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73:4221–4252. https://doi.org/10.1175/JAS-D-16-0037.1

    Article  Google Scholar 

  19. Fan J, Leung LR, Rosenfeld D, DeMott PJ (2017) Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds. Atmos Chem Phys 17:1017–1035. https://doi.org/10.5194/acp-17-1017-2017

    Article  Google Scholar 

  20. Fan J, Rosenfeld D, Zhang Y, Giangrande SE, Li Z, Machado LAT, Martin ST, Yang Y, Wang J, Artaxo P, Barbosa HMJ, Braga RC, Comstock JM, Feng Z, Gao W, Gomes HB, Mei F, Pöhlker C, Pöhlker ML, Pöschl U, de Souza RAF (2018) Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359:411–418. https://doi.org/10.1126/science.aan8461

    Article  Google Scholar 

  21. Fu Y, Pan X, Xian T et al (2018) Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Clim Dyn 51:1971–1989. https://doi.org/10.1007/s00382-017-3992-3

    Article  Google Scholar 

  22. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  23. Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res Atmos 117:D13209. https://doi.org/10.1029/2012JD017508

    Article  Google Scholar 

  24. Grandey BS, Gururaj A, Stier P, Wagner TM (2014) Rainfall-aerosol relationships explained by wet scavenging and humidity. Geophys Res Lett 41:5678–5684. https://doi.org/10.1002/2014GL060958

    Article  Google Scholar 

  25. Guo L, Turner AG, Highwood EJ (2016) Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM. J Clim 29:6937–6955. https://doi.org/10.1175/JCLI-D-15-0728.1

    Article  Google Scholar 

  26. Gupta P, Remer LA, Levy RC, Mattoo S (2018) Validation of MODIS 3 km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos Meas Tech 11:3145–3159. https://doi.org/10.5194/amt-11-3145-2018

    Article  Google Scholar 

  27. Haslett SL, Taylor JW, Deetz K, Vogel B, Babic K, Kalthoff N, Wieser A, Dione C, Lohou F, Brito J, Dupuy R, Schwarzenboeck A, Zieger P, Coe H (2019) The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa. Atmos Chem Phys 19:1505–1520. https://doi.org/10.5194/acp-19-1505-2019

    Article  Google Scholar 

  28. Hazra A, Taraphdar S, Halder M, Pokhrel S, Chaudhari HS, Salunke K, Mukhopadhyay P, Rao SA (2013) Indian summer monsoon drought 2009: role of aerosol and cloud microphysics. Atmos Sci Lett 14:181–186. https://doi.org/10.1002/asl2.437

    Article  Google Scholar 

  29. Hazra A, Padmakumari B, Maheskumar RS, Chen J-P (2016) The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: a numerical investigation. Atmos Res 171:41–55. https://doi.org/10.1016/j.atmosres.2015.12.005

    Article  Google Scholar 

  30. Hersbach H, Dee D (2016) ERA5 reanalysis is in production. ECMWF Newslett 147:7

    Google Scholar 

  31. Hubanks P, Platnick S, King M, Ridgway B (2019) MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document (ATBD) & Users Guide. ATBD reference number ATBD-MOD-30:129

  32. Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Kidd C, Nelkin EJ, Sorooshian S, Tan J, Xie P (2015a) Algorithm Theoretical Basis Document (ATBD) Version 4.5: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA, Greenbelt, MD, USA

  33. Huffman GJ, Bolvin DT, Nelkin EJ, Tan J (2015b) Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code, 612(47), 2019.

  34. Jayachandran VN, Suresh Babu SN, Vaishya A, Gogoi MM, Nair VS, Satheesh SK, Moorthy KK (2020) Altitude profiles of cloud condensation nuclei characteristics across the Indo-Gangetic Plain prior to the onset of the Indian summer monsoon. Atmos Chem Phys 20:561–576. https://doi.org/10.5194/acp-20-561-2020

    Article  Google Scholar 

  35. Ji Z, Kang S, Cong Z, Zhang Q, Yao T (2015) Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Clim Dyn 45:2831–2846. https://doi.org/10.1007/s00382-015-2509-1

    Article  Google Scholar 

  36. Kang S, Zhang Q, Qian Y, Ji Z, Li C, Cong Z, Zhang Y, Guo J, Du W, Huang J, You Q, Panday AK, Rupakheti M, Chen D, Gustafsson Ö, Thiemens MH, Qin D (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev 6:796–809. https://doi.org/10.1093/nsr/nwz031

    Article  Google Scholar 

  37. Koren I, Kaufman YJ, Rosenfeld D et al (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828. https://doi.org/10.1029/2005GL023187

    Article  Google Scholar 

  38. Koren I, Feingold G, Remer LA (2010) The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos Chem Phys 10:8855–8872. https://doi.org/10.5194/acp-10-8855-2010

    Article  Google Scholar 

  39. Koren I, Altaratz O, Remer LA, Feingold G, Martins JV, Heiblum RH (2012) Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat Geosci 5:118–122. https://doi.org/10.1038/ngeo1364

    Article  Google Scholar 

  40. Koren I, Altaratz O, Remer LA, Feingold G, Martins JV, Heiblum RH (2013) Reply to “Water vapour affects both rain and aerosol optical depth.” Nat Geosci 6:5–5. https://doi.org/10.1038/ngeo1693

    Article  Google Scholar 

  41. Kourtidis K, Stathopoulos S, Georgoulias AK, Alexandri G, Rapsomanikis S (2015) A study of the impact of synoptic weather conditions and water vapor on aerosol-cloud relationships over major urban clusters of China. Atmos Chem Phys Discuss 15:14007–14026. https://doi.org/10.5194/acpd-15-14007-2015

    Article  Google Scholar 

  42. Kumar M, Parmar KS, Kumar DB, Mhawish A, Broday DM, Mall RK, Banerjee T (2018) Long-term aerosol climatology over Indo-Gangetic Plain: trend, prediction and potential source fields. Atmos Env 180:37–50. https://doi.org/10.1016/j.atmosenv.2018.02.027

    Article  Google Scholar 

  43. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. https://doi.org/10.1029/2006GL027546

    Article  Google Scholar 

  44. Lau WKM, Kim K-M (2018) Impact of snow darkening by deposition of light-absorbing aerosols on snow cover in the Himalayas-Tibetan Plateau and influence on the Asian summer monsoon: a possible mechanism for the Blanford hypothesis. Atmosphere 9:438. https://doi.org/10.3390/atmos9110438

    Article  Google Scholar 

  45. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z

    Article  Google Scholar 

  46. Lau WKM, Kim K-M, Shi J-J, Matsui T, Chin M, Tan Q, Peters-Lidard C, Tao WK (2017) Impacts of aerosol–monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Clim Dyn 49:1945–1960. https://doi.org/10.1007/s00382-016-3430-y

    Article  Google Scholar 

  47. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The Collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034. https://doi.org/10.5194/amt-6-2989-2013

    Article  Google Scholar 

  48. Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894. https://doi.org/10.1038/ngeo1313

    Article  Google Scholar 

  49. Mahto SS, Mishra V (2019) Does ERA-5 outperform other reanalysis products for hydrologic applications in India? J Geophys Res Atmos 124:9423–9441. https://doi.org/10.1029/2019JD031155

    Article  Google Scholar 

  50. Manoj MG, Devara PCS, Joseph S, Sahai AK (2012) Aerosol indirect effect during the aberrant Indian Summer Monsoon breaks of 2009. Atmos Env 60:153–163. https://doi.org/10.1016/j.atmosenv.2012.06.007

    Article  Google Scholar 

  51. Mishra V, Smoliak BV, Lettenmaier DP, Wallace JM (2012) A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. PNAS 109:7213–7217. https://doi.org/10.1073/pnas.1119150109

    Article  Google Scholar 

  52. Ng DHL, Li R, Raghavan SV, Liong S-Y (2017) Investigating the relationship between aerosol optical depth and precipitation over Southeast Asia with relative humidity as an influencing factor. Sci Rep 7:13395. https://doi.org/10.1038/s41598-017-10858-1

    Article  Google Scholar 

  53. Nigam S, Bollasina M (2010) “Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link: “grounded” in observations? J Geophys Res Atmos 115:D16201. https://doi.org/10.1029/2009JD013800

    Article  Google Scholar 

  54. Niu F, Li Z (2012) Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos Chem Phys 12:8491–8498. https://doi.org/10.5194/acp-12-8491-2012

    Article  Google Scholar 

  55. Panicker AS, Pandithurai G, Dipu S (2010) Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data. Atmos Env 44:1937–1943. https://doi.org/10.1016/j.atmosenv.2010.02.015

    Article  Google Scholar 

  56. Patil N, Dave P, Venkataraman C (2017) Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years. Sci Rep 7:44996. https://doi.org/10.1038/srep44996

    Article  Google Scholar 

  57. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  58. Petters MD, Wright TP (2015) Revisiting ice nucleation from precipitation samples. Geophys Res Lett 42:8758–8766. https://doi.org/10.1002/2015GL065733

    Article  Google Scholar 

  59. Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41:459–473. https://doi.org/10.1109/TGRS.2002.808301

    Article  Google Scholar 

  60. Prakash S, Mitra AK, AghaKouchak A, Liu Z, Norouzi H, Pai DS (2018) A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J Hydrol 556:865–876. https://doi.org/10.1016/j.jhydrol.2016.01.029

    Article  Google Scholar 

  61. Prein AF, Heymsfield AJ (2020) Increased melting level height impacts surface precipitation phase and intensity. Nat Clim Change 10:771–776. https://doi.org/10.1038/s41558-020-0825-x

    Article  Google Scholar 

  62. Qian Y, Yasunari TJ, Doherty SJ, Flanner MG, Lau WKM, Ming J, Wang H, Wang M, Warren SG, Zhang R (2015) Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact. Adv Atmos Sci 32:64–91. https://doi.org/10.1007/s00376-014-0010-0

    Article  Google Scholar 

  63. Ragettli S, Immerzeel WW, Pellicciotti F (2016) Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. PNAS 113:9222–9227. https://doi.org/10.1073/pnas.1606526113

    Article  Google Scholar 

  64. Ralph FM, Prather KA, Cayan D, Spackman JR, DeMott P, Dettinger M, Fairall C, Leung R, Rosenfeld D, Rutledge S, Waliser D, White AB, Cordeira J, Martin A, Helly J, Intrieri J (2015) CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull Am Meteorol Soc 97:1209–1228. https://doi.org/10.1175/BAMS-D-14-00043.1

    Article  Google Scholar 

  65. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS 102:5326–5333. https://doi.org/10.1073/pnas.0500656102

    Article  Google Scholar 

  66. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973. https://doi.org/10.1175/JAS3385.1

    Article  Google Scholar 

  67. Remer LA, Mattoo S, Levy RC, Munchak LA (2013) MODIS 3 km aerosol product: algorithm and global perspective. Atmos Meas Tech 6:1829–1844. https://doi.org/10.5194/amt-6-1829-2013

    Article  Google Scholar 

  68. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108. https://doi.org/10.1029/1999GL006066

    Article  Google Scholar 

  69. Rosenfeld D, Woodley WL (2000) Deep convective clouds with sustained supercooled liquid water down to −37.5 °C. Nature 405:440–442. https://doi.org/10.1038/35013030

    Article  Google Scholar 

  70. Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313. https://doi.org/10.1126/science.1160606

    Article  Google Scholar 

  71. Rosenfeld D, Andreae MO, Asmi A, Chin M, de Leeuw G, Donovan DP, Kahn R, Kinne S, Kivekäs N, Kulmala M, Lau W, Schmidt KS, Suni T, Wagner T, Wild M, Quaas J (2014) Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophy 52:750–808. https://doi.org/10.1002/2013RG000441

    Article  Google Scholar 

  72. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6:7423. https://doi.org/10.1038/ncomms8423

    Article  Google Scholar 

  73. Sarangi C, Tripathi SN, Kanawade VP, Koren I, Pai DS (2017) Investigation of the aerosol–cloud–rainfall association over the Indian summer monsoon region. Atmos Chem Phys 17:5185–5204. https://doi.org/10.5194/acp-17-5185-2017

    Article  Google Scholar 

  74. Sayer AM, Hsu NC, Bettenhausen C, Jeong M-J (2013) Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J Geophys Res Atmos 118:7864–7872. https://doi.org/10.1002/jgrd.50600

    Article  Google Scholar 

  75. Sheffield AM, Saleeby SM, van den Heever SC (2015) Aerosol-induced mechanisms for cumulus congestus growth. J Geophys Res Atmos 120:8941–8952. https://doi.org/10.1002/2015JD023743

    Article  Google Scholar 

  76. Singh D, Bollasina M, Ting M, Diffenbaugh NS (2019) Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Clim Dyn 52:6301–6320. https://doi.org/10.1007/s00382-018-4512-9

    Article  Google Scholar 

  77. Sunilkumar K, Yatagai A, Masuda M (2019) Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones With APHRODITE. Earth Space Sci 6:1321–1335. https://doi.org/10.1029/2018EA000503

    Article  Google Scholar 

  78. Tao W-K, Li X (2016) The relationship between latent heating, vertical velocity, and precipitation processes: the impact of aerosols on precipitation in organized deep convective systems. J Geophys Res Atmos 121:6299–6320. https://doi.org/10.1002/2015JD024267

    Article  Google Scholar 

  79. Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen I, Iversen I, Kloster S, Koch D, Kirkevåg A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813. https://doi.org/10.5194/acp-6-1777-2006

    Article  Google Scholar 

  80. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152. https://doi.org/10.1175/1520-0469(1977)034%3c1149:TIOPOT%3e2.0.CO;2

    Article  Google Scholar 

  81. Vinoj V, Rasch PJ, Wang H, Yoon J-H, Ma P-L, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7:308–313. https://doi.org/10.1038/ngeo2107

    Article  Google Scholar 

  82. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev 89:79–96. https://doi.org/10.1016/j.earscirev.2008.04.002

    Article  Google Scholar 

  83. Wang S, Zhang M, Pepin NC, Li Z, Sun M, Huang X, Wang Q (2014) Recent changes in freezing level heights in High Asia and their impact on glacier changes. J Geophys Res Atmos 119:1753–1765. https://doi.org/10.1002/2013JD020490

    Article  Google Scholar 

  84. Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103:14451–14510. https://doi.org/10.1029/97JC02719

    Article  Google Scholar 

  85. Wei J, Peng Y, Guo J, Sun L (2019) Performance of MODIS Collection 6.1 Level 3 aerosol products in spatial-temporal variations over land. Atmos Environ 206:30–44. https://doi.org/10.1016/j.atmosenv.2019.03.001

    Article  Google Scholar 

  86. Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999) Version 1.02. Center for Climatic Research, University of Delaware, Newark. http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html

  87. Xiao H, Yin Y, Chen Q, Zhao P (2016) Impact of aerosol and freezing level on orographic clouds: a sensitivity study. Atmos Res 176–177:19–28. https://doi.org/10.1016/j.atmosres.2016.02.014

    Article  Google Scholar 

  88. Yadav S, Venezia RE, Paerl RW, Petters MD (2019) Characterization of ice-nucleating particles over Northern India. J Geophys Res Atmos 124:10467–10482. https://doi.org/10.1029/2019JD030702

    Article  Google Scholar 

  89. Zhang Y, Guo Y (2011) Variability of atmospheric freezing-level height and its impact on the cryosphere in China. Ann Glaciol 52:81–88. https://doi.org/10.3189/172756411797252095

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Nevada, Reno, and the Division of Atmospheric Sciences, Desert Research Institute (DRI) for supporting this research. Dr. Mejia is partially funded by the Division of Atmospheric Sciences at DRI. This research contains substantial information generated using Copernicus Climate Change Service Information, accessed in 2019-2020. We also thank NASA for providing the MODIS, GPM, and AERONET data. The authors wish to thank Karen Stewart and three anonymous reviewers for their helpful and constructive suggestions of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John F. Mejia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1322 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adhikari, P., Mejia, J.F. Influence of aerosols on clouds, precipitation and freezing level height over the foothills of the Himalayas during the Indian summer monsoon. Clim Dyn 57, 395–413 (2021). https://doi.org/10.1007/s00382-021-05710-2

Download citation

Keywords

  • Aerosols loading
  • The Himalayas
  • Freezing level height
  • Summer monsoon