Skip to main content

Advertisement

Log in

Climate response to introduction of the ESA CCI land cover data to the NCAR CESM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The European Space Agency Climate Change Initiative Land Cover data (ESA CCI-LC, from 1992 to 2015) is introduced to the National Center for Atmospheric Research Community Earth System Model version 1.2.1 (NCAR CESM1.2.1). In comparison with the original land surface data in the Community Land Model version 4 (ORG), the new data features notable land use and land cover change (LULCC) with increased forests over northeastern Asia and Alaska by decreasing shrublands and grasslands. Overestimated bare land cover over the Tibetan Plateau (TP) and the Rocky Mountains in the ORG are corrected with the replacements by grasslands and shrublands respectively in the new data. The model simulation results show that with the introduction of the ESA CCI-LC, the simulated surface albedo, surface net radiation flux, sensible and latent heat fluxes are relatively improved over the regions where significant LULCC exists, such as northeastern Asia, Alaska, the TP, and Australia. Surface air temperature, precipitation, and atmospheric circulation are improved in boreal winter but degraded in summer. The winter warming over northeastern Asia results from increased longwave downwelling flux and adiabatic heating while the notable winter cooling over Alaska is attributed to strong cold advection followed by reduced longwave downwelling flux. LULCC alters precipitation by influencing water vapor content. In winter, LULCC affects atmospheric circulation via modulating baroclinicity while in summer, it influences land-sea thermal contrast, thus affecting the intensity of East Asian summer monsoon. LULCC also alters the simulated dust burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Balsamo G, Albergel C, Beljaars A, Boussetta S et al (2015) ERA-Interim/land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19:389–407. https://doi.org/10.5194/hess-19-389-2015

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  Google Scholar 

  • Chase TN, Pielke RA et al (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16(2–3):93–105

    Article  Google Scholar 

  • Chemke R, Kaspi Y, Halevy I (2016) The thermodynamic effect of atmospheric mass on early Earth’s temperature. Geophys Res Lett 43(11):414–422. https://doi.org/10.1002/2016GL071279

    Article  Google Scholar 

  • Chen C-J et al (2020) Central Taiwan’s hydroclimate in response to land use/cover change. Environ Res Lett 15:034015 (In press)

    Article  Google Scholar 

  • Chris B et al (2012) A National Strategy for Advancing Climate Modeling. The National Academies Press, Washington. https://doi.org/10.17226/13430

    Book  Google Scholar 

  • Cogley JG (1991) GGHYDRO–global hydrographic data release 2.0. Trent Climate Note 91-1, Dept. Geography, Trent University, Peterborough, Ontario, pp 91–1

  • David JN, Eric JG (2020) The increase of impervious cover and decrease of tree cover within urban areas globally (2012–2017). Urban For Urban Green 49:126638. https://doi.org/10.1016/j.ufug.2020.126638

    Article  Google Scholar 

  • Decremer D, Chung CE, Ekman AML, Brandefelt J (2014) Which significance test performs the best in climate simulations? Tellus Ser A 66:1–13. https://doi.org/10.3402/tellusa.v66.23139

    Article  Google Scholar 

  • Defourny P, Bontemps S, Lamarche C, Brockmann C, Boettcher M, Wevers J, Kirches G (2017) Land cover CCI: product user guide version 2.0. http://maps.elie.ucl.ac.be/CCI/viewer/. Accessed 6 June 2020

  • Ding YH, Sun Y, Wang ZY et al (2009) Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: possible causes. Int J Climatol J R Meteorol Soc 29(13):1926–1944

    Article  Google Scholar 

  • Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) LandScan: a global population database for estimating populations at risk. Photogramm Eng Remote Sens 66(7):849–885

    Google Scholar 

  • Eady ET (1949) Long waves and cyclone waves. Tellus 1(3):33–52

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Fang J, Yang XQ (2016) Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system. Clim Dyn 47(5–6):1989–2007

    Article  Google Scholar 

  • Friedl MA, Sullamenashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang XM (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182. https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  • Gelaro R, Mccarty W et al (2017) The modern-era retrospective analysis for research and applications, version 2 (merra-2). J Clim 30(14):5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Georgievski G, Hagemann S (2019) Characterizing uncertainties in the ESA-CCI land cover map of the epoch 2010 and their impacts on MPI-ESM climate simulations. Theor Appl Climatol 137(1):1587–1603

    Article  Google Scholar 

  • Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L et al (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34(7):2607–2654

    Article  Google Scholar 

  • Hansen MC, DeFries RS et al (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7(10):1–15

    Article  Google Scholar 

  • Hartley A, MacBean N, Georgievski G, Bontemps S (2017) Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens Environ 203:71–89

    Article  Google Scholar 

  • Hartmann DL (1994) Global physical climatology. Academic Press, San Diego

    Google Scholar 

  • He Y, Lee E, Mankin JS (2020) Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ Res Lett 15(3):034032. https://doi.org/10.1088/1748-9326/ab6616

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864

    Article  Google Scholar 

  • Huffman GJ, Behrangi A, Bolvin DT, Nelkin EJ (2020) GPCP Version 3.1 SG Combined Precipitation Data Set, last updated July 29, 2020. GES DISC, Greenbelt, MD. Accessed 29 July 2020. https://doi.org/10.5067/DBVUO4KQHXTK

  • Hurrell JW, Hack JJ, Shea D et al (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim. https://doi.org/10.1175/2008JCLI2292.1

    Article  Google Scholar 

  • Jackson TL, Feddema JJ, Oleson KW, Bonan GB et al (2010) Parameterization of urban characteristics for global climate modeling. Ann Assoc Am Geogr 100(4):848–865

    Article  Google Scholar 

  • Jung M, Koirala S, Weber U et al (2019) The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci Data 6:74. https://doi.org/10.1038/s41597-019-0076-8

    Article  Google Scholar 

  • Kabat P, Claussen M, Dirmeyer PA, Gash JHC, Bravo de Guenni L, Meybeck M, Pielke RA, Vorosmarty CJ, Hutjes RWA, Lutkemeier S (eds) (2004) Vegetation, water, humans and the climate: a new perspective on an interactive system. Global change—the IGBP series. Springer, Berlin

    Google Scholar 

  • Karvonen V, Ribard C et al (2018) Comparing ESA land cover data with higher resolution national datasets. Creating, managing, and analysing geospatial data and databases in geographical themes, pp 26–45

  • Kay JE et al (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res Biogeosci 112(G1):252–257. https://doi.org/10.1029/2006JG000168

    Article  Google Scholar 

  • Lee S, Gong TT, Johnson N, Feldstein SB, Pollard D (2011) On the possible link between tropical convection and the Northern Hemisphere Arctic Surface air temperature change between 1958 and 2001. J Clim 24:4350–4367. https://doi.org/10.1175/2011JCLI4003.1

    Article  Google Scholar 

  • Li Y et al (2016) The role of spatial scale and background climate in the latitudinal temperature response to deforestation. Earth Syst Dyn 7(1):167–181

    Article  Google Scholar 

  • Li W, MacBean N, Ciais P et al (2018) Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst Sci Data 10(1):219

    Article  Google Scholar 

  • Liu XX, Yu L, Si YL et al (2018a) Identifying patterns and hotspots of global land cover transitions using the ESA CCI land cover dataset. Remote Sens Lett 9(10):972–981. https://doi.org/10.1080/2150704x.2018.1500070

    Article  Google Scholar 

  • Liu XX, Yu L, Li W et al (2018b) Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. Int J Remote Sens 39(20):6631–6645. https://doi.org/10.1080/01431161.2018.1465613

    Article  Google Scholar 

  • Livezey RE, Chen W (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59. https://doi.org/10.1175/1520-0493(1983)111%3c0046:SFSAID%3e2.0.CO;2

    Article  Google Scholar 

  • Lorenz RA, Pitman J, Sisson SA (2016) Does Amazonian deforestation cause global effects; can we be sure? J Geophys Res Atmos 121:5567–5584. https://doi.org/10.1002/2015JD024357

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR Data. Int J Remote Sens 21(6–7):1303–1330. https://doi.org/10.1080/014311600210191

    Article  Google Scholar 

  • Ma H, Jiang Z, Song J et al (2016) Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model. Clim Dyn 46:2977–2989. https://doi.org/10.1007/s00382-015-2745-4

    Article  Google Scholar 

  • Mahmood R, Pielke RA, Hubbard KG et al (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34(4):929–953

    Article  Google Scholar 

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J Geophys Res 117:D08101. https://doi.org/10.1029/2011JD017187

    Article  Google Scholar 

  • Oleson KW, Bonan GB, Feddema JJ, Vertenstein M, and Kluzek E (2010a) Technical description of an urban parameterization for the Community Land Model (CLMU), Tech. Note NCAR/TN-480+STR, Natl. Cent. for Atmos. Res., Boulder, Colo

  • Oleson KW, Lawrence DM, Gordon B et al (2010b) Technical description of version 4.0 of the Community Land Model (CLM). NCAR/TN-478+ STR. National Center for Atmospheric Research, Boulder, CO, USA

  • Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landsc Ecol 4(2):133–155

    Article  Google Scholar 

  • Pielke RA, Pitman A, Niyogi D et al (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2(6):828–850

    Article  Google Scholar 

  • Pielke RA, Mahmood R, McAlpine C (2016) Land’s complex role in climate change. Phys Today 69(2016):40–46

    Article  Google Scholar 

  • Pitman AJ et al (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. https://doi.org/10.1029/2009GL039076

    Article  Google Scholar 

  • Schaaf C and Wang Z (2015) MCD43C3 MODIS/Terra+Aqua BRDF/Albedo Albedo Daily L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD43C3.006. Accessed 15 July 2020

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA et al (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509

    Article  Google Scholar 

  • Sertel E, Robock A, Ormeci C (2010) Impacts of land cover data quality on regional climate simulations. Int J Climatol 30(13):1942–1953

    Article  Google Scholar 

  • Staver AC, Hansen MC (2015) Analysis of stable states in global savannas: is the CART pulling the horse? A comment. Glob Ecol Biogeogr 24:985–987

    Article  Google Scholar 

  • Sterling SM, Ducharne A, Polcher J (2013) The impact of global land-cover change on the terrestrial water cycle. Nat Clim Change 3(4):385–390

    Article  Google Scholar 

  • Szilagyi J, Franz TE (2020) Anthropogenic hydrometeorological changes at a regional scale: observed irrigation–precipitation feedback (1979–2015) in Nebraska, USA. Sustain Water Resour Manag 6:1. https://doi.org/10.1007/s40899-020-00368-w

    Article  Google Scholar 

  • Takata K, Saito K, Yasunari T (2009) Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proc Natl Acad Sci USA 106(24):9586–9589. https://doi.org/10.1073/pnas.0807346106

    Article  Google Scholar 

  • Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50(2):RG2005

    Article  Google Scholar 

  • Wilks DS (2016) “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull Am Meteorol Soc 97(12):160309141232001

    Article  Google Scholar 

  • Yu Y, Xie ZH, Wang YY et al (2014a) Results of a CLM4 land surface simulation over China using a multisource integrated land cover dataset. Atmos Ocean Sci Lett 7(4):279–285

    Article  Google Scholar 

  • Yu L, Wang J, Li XC et al (2014b) A multi-resolution global land cover dataset through multisource data aggregation. Sci China Earth Sci 57(10):2317–2329. https://doi.org/10.1007/s11430-014-4919-z

    Article  Google Scholar 

  • Zender CS, Bian H, Newman D (2003) Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108(D14):4416. https://doi.org/10.1029/2002JD002775

    Article  Google Scholar 

  • Zhang G, Cai M, Hu A (2013) Energy consumption and the unexplained winter warming over northern Asia and North America. Nat Clim Change 3:466–470. https://doi.org/10.1038/nclimate1803

    Article  Google Scholar 

  • Zhang S, Yang D, Yang Y et al (2018) Excessive afforestation and soil drying on China’s Loess Plateau. J Geophys Res Biogeosci. https://doi.org/10.1002/2017JG004038

    Article  Google Scholar 

  • Zhang T, Mahmood R, Lin X et al (2019) Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA. Weather Clim Extremes 23:100197

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China Grants 2016YFA0602103, 2017YFA0604000 and 2017YFA0604401, and the National Natural Science Foundation of China for the Youth Science Foundation Project with grant 41975126. The NCAR CESM simulation outputs for this study can be obtained from the authors upon request. The ESA CCI-LC data is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc. The MODIS MCD43C3 Version 6 Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) Albedo data are available at https://lpdaac.usgs.gov/products/mcd43c3v006/. The FLUXCOM database is available at http://www.fluxcom.org/. The HadCRU observation is available at https://www.metoffice.gov.uk/hadobs/hadcrut4/ and the GPCP observation is available at https://search.earthdata.nasa.gov/search?q=GPCP. The ERA-Interim reanalysis data is available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim and the MERRA reanalysis data is available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, X., Yu, L. et al. Climate response to introduction of the ESA CCI land cover data to the NCAR CESM. Clim Dyn 56, 4109–4127 (2021). https://doi.org/10.1007/s00382-021-05690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05690-3

Keywords

Navigation