Skip to main content

Added value of kilometer-scale modeling over the third pole region: a CORDEX-CPTP pilot study

Abstract

High-accuracy meteorological datasets are urgently required for understanding hydrological processes across the Third Pole (Qinghai-Tibetan Plateau, or TP), where meteorological stations are sparse. Low-resolution weather and climate simulations have significant errors in this region due to their inability to resolve meso-microscale processes associated with the complex terrain and convective clouds. This work presents a contribution to CORDEX Convection-Permitting Third Pole (CPTP) using dynamical downscaling of the latest global reanalysis data produced by the European Centre for Medium-Range Weather Forecasts (i.e., ERA5) at very high resolution (approximately 0.033°) based on the Weather Research and Forecasting (WRF) model. The results show that the kilometer-scale horizontal grid spacing simulation (WRF3) outperforms the ERA5 and the High Asia Refined regional reanalysis (HAR v2) in terms of smaller biases and root mean square errors, as well as higher spatial pattern correlation coefficients for 10-m wind speed and precipitation. Furthermore, WRF3 more realistically reproduces observed night-time precipitation peaks in the interior TP, while ERA5 and HAR v2 show erroneous afternoon precipitation peaks. Therefore, the added values achieved by resolving detailed physical processes when increasing grid spacing are considerable. This work demonstrates the potential for developing a reliable high resolution meteorological dataset required for research in this unique region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ban N, Schmidli J, Schar C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res-Atmos 119(13)

  2. Ban N, Racjczak J, Schmidli J, Schar C (2020) Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Clim Dyn 55:61–75

    Article  Google Scholar 

  3. Beljaars ACM, Brown AR, Wood N (2004) A new parametrization of turbulent orographic form drag. Q J R Meteorol Soc 130(599):1327–1347. https://doi.org/10.1256/qj.03.073

    Article  Google Scholar 

  4. Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dyn 6(1):109–124. https://doi.org/10.5194/esd-6-109-2015

    Article  Google Scholar 

  5. Ding YH, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89(1–4):117–142. https://doi.org/10.1007/s00703-005-0125-z

    Article  Google Scholar 

  6. Fosser G, Khodayar S, Berg P (2015) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44(1–2):45–60. https://doi.org/10.1007/s00382-014-2242-1

    Article  Google Scholar 

  7. Gao YH, Xue YK, Peng W, Kang HS, Waliser D (2011) Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv Atmos Sci 28(5):1077–1098. https://doi.org/10.1007/s00376-010-0039-7

    Article  Google Scholar 

  8. Gao YH, Xu JW, Chen DL (2015) Evaluation of WRF Mesoscale Climate Simulations over the Tibetan Plateau during 1979–2011. J Climate 28(7):2823–2841. https://doi.org/10.1175/Jcli-D-14-00300.1

    Article  Google Scholar 

  9. Gao YH, Xiao LH, Chen DL, Xu JW, Zhang HW (2018) Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. Int J Climatol 38(3):1285–1297

    Article  Google Scholar 

  10. Gao YH, Chen F, Jiang Y (2020) Evaluation of a Convection-Permitting Modeling of Precipitation over the TibetanPlateau and Its Influences on the Simulation of Snow-Cover Fraction. J Hydrometeorol 21:1531–1548

    Article  Google Scholar 

  11. Guo Z, Fang J, Sun X, Tang J, Yang Y, Tang J (2019) Decadal long convectionpermitting regional climate simulations over eastern China: evaluation of diurnal cycle of precipitation. Clim Dyn. https://doi.org/10.1007/s00382-019-05061-z

    Article  Google Scholar 

  12. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian Water Towers. Science 328(5984):1382–1385. https://doi.org/10.1126/science.1183188

    Article  Google Scholar 

  13. Knist S, Geoergen K, Simmer C (2020) Evaluation and projected changes of precipitation statisticsin convection-permitting WRF climate simulations over Central Europe. Clim Dyn 55:325–341

    Article  Google Scholar 

  14. Kukulies J, Chen D, Wang M (2020) Temporal and spatial variations of convection, clouds and precipitation over the Tibetan Plateau from recent satellite observations. Part II: precipitation climatology derived from global precipitation measurement mission. Int J Climatol. https://doi.org/10.1002/joc.6493

    Article  Google Scholar 

  15. Li Y, Zhang M (2017) The role of shallow convection over the Tibetan Plateau. J Clim 30(15):5719–5803. https://doi.org/10.1175/JCLI-D-16-0599.1

    Article  Google Scholar 

  16. Li D, Yang K, Tang W, Li X, Zhou X, Guo D (2020a) Characterizing precipitation in high altitudes of the western Tibetan Plateau with a focus on major glacier areas. Int J Climatol. https://doi.org/10.1002/joc.6509

    Article  Google Scholar 

  17. Li P, Furtado K, Zhou T, Chen H, Li J, Guo Z, Xiao C (2020b) The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Ofce Unifed Model at convection-permitting scales. Clim Dyn 2020(55):131–151

    Article  Google Scholar 

  18. Li P, Furtado K, Zhou T, Chen H, Li J (2020c) Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3921

    Article  Google Scholar 

  19. Lin CG, Chen DL, Yang K, Ou TH (2018) Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau. Clim Dyn. https://doi.org/10.1007/s00382-018-4074-x

    Article  Google Scholar 

  20. Lind P, Belusic D, Christensen O, Dobler A et al (2020) Benefts and added value of convection-permitting climate modelingover Fenno-Scandinavia. Clim Dyn 55:1893–1912

    Article  Google Scholar 

  21. Ma JH, Wang HJ, Fan K (2015) Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv Atmos Sci 32(5):577–584. https://doi.org/10.1007/s00376-014-4143-y

    Article  Google Scholar 

  22. Ma L, Zhao L, Tian LM, Yuan LM, Xiao Y, Zhang LL, Zou DF, Qiao YP (2019) Evaluation of the integrated multi-satellite retrievals for global precipitation measurement over the Tibetan Plateau. J Mt Sci-Engl 16(7):1500–1514. https://doi.org/10.1007/s11629-018-5158-0

    Article  Google Scholar 

  23. Malardel S, Wedi N, Deconinck W, Diamantakis M, Kuhnlein C, Mozdzynski G, Hamrud M, Smolarkiewicz P (2015) A new grid for the IFS. , Newsletter No. 146 - Winter.( 2015/16, ECMWF, 6 pp).

  24. Maussion F, Scherer D, Finkelnburg R, Richters J, Yang W, Yao T (2011) WRF simulation of a precipitation event over the Tibetan Plateau China—an assessment using remote sensing and ground observations. Hydrol Earth Syst Sci 15(6):1795–1817. https://doi.org/10.5194/hess-15-1795-2011

    Article  Google Scholar 

  25. Maussion F, Scherer D, Molg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim 27(5):1910–1927. https://doi.org/10.1175/Jcli-D-13-00282.1

    Article  Google Scholar 

  26. Meredith E, Ulbrich U, Rust H (2020) Subhourly rainfall in a convection-permitting model. Environ Res Lett 15(2020):034031

    Article  Google Scholar 

  27. Mooney PA, Broderick C, Bruyere CL, Mulligan FJ, Prein AF (2017) Clustering of Observed Diurnal Cycles of Precipitation over the United States for Evaluation of a WRF Multiphysics Regional Climate Ensemble. J Clim 30(22):9267–9286

    Article  Google Scholar 

  28. Mueller B, Seneviratne SI (2014) Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys Res Lett 41(1):128–134. https://doi.org/10.1002/2013gl058055

    Article  Google Scholar 

  29. Ou T, Chen D, Chen X, Zhang F, Lin C, Yang K, Lai HW (2020) Simulated diurnal cycle of summer precipitation over the Tibetan Plateau at gray-zone grid spacing. Clim Dyn 54:3525–3539

    Article  Google Scholar 

  30. Powers JG et al (2017) The weather research and forecasting model Overview System Efforts, and Future Directions. B Am Meteorol Soc 98(8):1717–1737

    Article  Google Scholar 

  31. Prein AF, Holland GJ, Rasmussen RM, Done J, Ikeda K, Clark MP, Liu CHH (2013) Importance of Regional Climate Model Grid Spacing for the Simulation of Heavy Precipitation in the Colorado Headwaters. J Clim 26(13):4848–4857

    Article  Google Scholar 

  32. Prein AF et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361

    Article  Google Scholar 

  33. Prein AF, Bukovsky MS, Mearns LO, Bruyere CL, Done JM (2019) Simulating North American Weather Types With Regional Climate Models. Front Env Sci-Switz 7

  34. Rasmussen R et al (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24(12):3015–3048

    Article  Google Scholar 

  35. Saeed S, Brisson E, Demuzere M, Tabari H, Willems P, van Lipzig NPM (2017) Multidecadal convection permitting climate simulations over Belgium: sensitivity of future precipitation extremes. Atmos Sci Lett 18(1):29–36. https://doi.org/10.1002/asl.720

    Article  Google Scholar 

  36. Scaff L, Prein A, Li Y, Liu C, Rasmussen R, Ikeda K (2020) Simulating the convective precipitation diurnal cycle in North America’s current and future climate. Clim Dyn 55:369–382

    Article  Google Scholar 

  37. Schwitalla T, Warrach-Sagi K, Wulfmeyer V, Resch M (2020) Near global scale high-resolution seasonal simulations with WRF-NOAHMP vol 3.8.1. Geosci Mode Dev 13:1959–1974

    Article  Google Scholar 

  38. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485

    Article  Google Scholar 

  39. Sugimoto S, Takahashi HG (2016) Effect of Spatial Resolution and Cumulus Parameterization on Simulated Precipitation over South Asia. Sola 12a:7–12

  40. Sun XG, Xue M, Brotzge J, McPherson RA, Hu XM, Yang XQ (2016) An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4km resolution. J Geophys Res-Atmos 121(23):13801–13825. https://doi.org/10.1002/2016jd024796

    Article  Google Scholar 

  41. Tong K, Su F, Yang D, Zhang L, Hao Z (2014) Tibetan Plateau precipitation as depicted by gaugeobservations, reanalyses and satellite retrievals. Int J Climatol 34:265–285. https://doi.org/10.1002/joc.3682

    Article  Google Scholar 

  42. Wang YW, Wang L, Li XP, Chen D (2018) Temporal and spatial changes in estimated near-surface air temperature lapse rates on Tibetan Plateau. Int J Climatol 38(7):2907–2921. https://doi.org/10.1002/joc.5471

    Article  Google Scholar 

  43. Wang Y, Yang K, Zhou X, Chen D, Lu H, Ouyang L, Chen Y, Wang B (2020a) Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Clim Dyn 54(3):1729–1740. https://doi.org/10.1007/s00382-019-05080-w

    Article  Google Scholar 

  44. Wang X, Tolksdorf V, Otto M, Scherer D (2020b) WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: towards a new version of the High Asia Refined analysis. Int J Climatol. https://doi.org/10.1002/joc.6686

    Article  Google Scholar 

  45. Wu GX, Liu YM, He B, Bao Q, Duan AM, Jin FF (2012) Thermal Controls on the Asian Summer Monsoon. Sci Rep-Uk. https://doi.org/10.1038/srep00404

    Article  Google Scholar 

  46. Wu GX, He B, Duan AM, Liu YM, Yu W (2017) Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Adv Atmos Sci 34(10):1169–1184. https://doi.org/10.1007/s00376-017-7014-5

    Article  Google Scholar 

  47. Xu XD, Lu CG, Shi XH, Gao ST (2008) World water tower: an atmospheric perspective. Geophys Res Lett. https://doi.org/10.1029/2008gl035867

    Article  Google Scholar 

  48. Xu JW, Koldunov N, Remedio ARC, Sein DV, Zhi XF, Jiang X, Xu M, Zhu XH, Fraedrich K, Jacob D (2018) On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Clim Dyn 51(11–12):4525–4542. https://doi.org/10.1007/s00382-018-4085-7

    Article  Google Scholar 

  49. Yang D, Shi Y, Kang E, Zhang Y, Tang X (1991) Results of Solid Precipitation Measurment Intercomparison in the Alpine Area of URUMQI River Basin. Chin Sci Bull 36(13)

  50. Yao T et al (2012) Third pole environment (TPE). Environ Dev 3(2012):52–64. https://doi.org/10.1016/j.envdev.2012.04.002

    Article  Google Scholar 

  51. Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P et al (2019) Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations. Model Anal B Am Meteorol Soc 100(3):423–444

    Article  Google Scholar 

  52. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. B Am Meteorol Soc 93(9):1401–1415. https://doi.org/10.1175/Bams-D-11-00122.1

    Article  Google Scholar 

  53. Ye BS, Yang DQ, Ding YJ, Han TD, Koike T (2004) A bias-corrected precipitation climatology for China. J Hydrometeorol 5(6):1147–1160. https://doi.org/10.1175/Jhm-366.1

    Article  Google Scholar 

  54. Zhou X, Beljaars ACM, Wang Y, Huang B, Lin C, Chen Y, Wu H (2017) Evaluation of WRF simulations with different selections of sub-grid orographic drag over the Tibetan Plateau. J Geophys Res-Atmos 122:9759–9772. https://doi.org/10.1002/2017jd027212

    Article  Google Scholar 

  55. Zhou X, Yang K, Wang Y (2018) Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau. Clim Dyn 50(7–8):2243–2255. https://doi.org/10.1007/s00382-017-3677-y

    Article  Google Scholar 

  56. Zhou X, Yang K, Beljaars A, Li HD, Lin CG, Huang B, Wang Y (2019) Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau. Clim Dyn 53(1–2):707–720. https://doi.org/10.1007/s00382-019-04628-0

    Article  Google Scholar 

  57. Zhu ZW, Yong B, Ke LH, Wang GQ, Ren LL, Chen X (2018) Tracing the error sources of global satellite mapping of precipitation for GPM (GPM-GSMaP) Over the Tibetan Plateau China. IEEE J-Stars 11(7):2181–2191. https://doi.org/10.1109/Jstars.2018.2825336

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that there is no conflict of interest. All the data can be found at the given citations; the simulation results can be achieved by contacting the authors.

This work is supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0206), the National Natural Science Foundation of China (Grant No. 41705084 and 41905087), and the 13th Five-Year Information Plan of Chinese Academy of Sciences (Grant No. XXH13505-06). DC is supported by the Swedish BECC, MERGE, National Space Agency (SNSA: 188/18), and the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre in Sweden (NSC). This is a contribution No. 2 to CORDEX-FPS-CPTP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yang, K., Ouyang, L. et al. Added value of kilometer-scale modeling over the third pole region: a CORDEX-CPTP pilot study. Clim Dyn 57, 1673–1687 (2021). https://doi.org/10.1007/s00382-021-05653-8

Download citation

Keywords

  • Convection-permitting
  • Third pole region
  • WRF
  • Kilometer-scale modeling