Monsoon precipitation variations in Myanmar since AD 1770: linkage to tropical ocean‐atmospheric circulations

Abstract

To understand inter-annual to decadal summer monsoon precipitation variations in Myanmar, we developed new tree-ring chronologies of Tectona grandis (teak) from three sampling sites in north-central Myanmar where the climatic proxy is sparse. A regional chronology (spanning 1700–2016) derived from three site chronologies showed a strongly positive precipitation sensitivity during the summer monsoon (R = 0.71), indicating that slow tree growth was detected in years of deficient precipitation. We reconstructed monsoon precipitation (May–October) for the period 1770–2016, with robust calibration-verification statistics. Our reconstruction revealed 22 (16) extremely dry (wet) years over the past 247 years. Several dry and wet episodes recorded in our reconstruction are consistent with other precipitation proxies from tropical Asia, such as the East Indian drought in 1790–1796 and the Victorian Holocaust drought in 1888–1890. The 2.0–4.0-year high-frequency periodicities revealed from spectral peaks and dominant regions of high spatial correlations indicated the summer precipitation in Myanmar is linked with broader-scale ocean-atmospheric circulations, mainly associated with the El Niño-Southern Oscillation (ENSO) activities due to sea surface temperature variations in the tropical Pacific Ocean. Coherent relationships of our reconstructed series with ENSO-related climate indices further support the dynamics of monsoon precipitation variability in Myanmar is inter-linked with global climate systems. Our reconstruction inferred from teak tree rings may be useful to provide valuable insight into the impacts of extreme weather events associated with monsoon hydroclimate in Myanmar.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426:274–278. https://doi.org/10.1038/nature02101

    Article  Google Scholar 

  2. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8(1):47–61. https://doi.org/10.5194/hess-8-47-2004

    Article  Google Scholar 

  3. Aung LL, Zin EE, Theingi P et al (2017) Myanmar Climate Report. Norwegian Meteorological Institute. https://www.burmalibrary.org/sites/burmalibrary.org/files/obl/2017-09-14-Myanmar-Climate-Report-en-red.pdf. Accessed 10 Apr 2020

  4. Bermejo I, Canellas I, San Miguel A (2004) Growth and yield models for teak plantations in Costa Rica Forest. Ecol Manag 189(1–3):97–110. https://doi.org/10.1016/j.foreco.2003.07.031

    Article  Google Scholar 

  5. Besset M, Anthony EJ, Dussouillez P et al (2017) The impact of Cyclone Nargis on the Ayeyarwady (Irrawaddy) River delta shoreline and nearshore zone (Myanmar): towards degraded delta resilience? C R Geosci 349(6–7):238–247. https://doi.org/10.1016/j.crte.2017.09.002

    Article  Google Scholar 

  6. Borgaonkar HP, Sikder AB, Ram S et al (2010) El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis LF) trees from south India. Palaeogeogr Palaeoclimatol Palaeoecol 285(1–2):74–84. https://doi.org/10.1016/j.palaeo.2009.10.026

    Article  Google Scholar 

  7. Bradley RS (2015) Paleoclimatology: reconstructing climates of the quaternary: third edition. https://doi.org/10.1016/C2009-0-18310-1

  8. Brakenridge GR, Syvitski JPM, Niebuhr E et al (2017) Design with nature: causation and avoidance of catastrophic flooding, Myanmar. Earth Sci Rev 165:81–109. https://doi.org/10.1016/j.earscirev.2016.12.009

    Article  Google Scholar 

  9. Buckley BM, Palakit K, Duangsathaporn K et al (2007) Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors. Climate Dyn 29(1):63–71. https://doi.org/10.1007/s00382-007-0225-1

    Article  Google Scholar 

  10. Buckley BM, Anchukaitis KJ, Penny D et al (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA 107(15):6748–6752. https://doi.org/10.1073/pnas.0910827107

    Article  Google Scholar 

  11. Buckley BM, Fletcher R, Wang SYS et al (2014) Monsoon extremes and society over the past millennium on mainland Southeast Asia. Quat Sci Rev 95:1–19. https://doi.org/10.1016/j.quascirev.2014.04.022

    Article  Google Scholar 

  12. Cai QF, Liu Y, Liu H et al (2015) Reconstruction of drought variability in North China and its association with sea surface temperature in the joining area of Asia and Indian-Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 417:554–560. https://doi.org/10.1016/j.palaeo.2014.10.021

    Article  Google Scholar 

  13. Calkins PH, Win NW (2013) Impacts of cyclone Nargis on social capital and happiness in slightly and heavily affected areas of Myanmar. In: Natural disasters—multifaceted aspects in management and impact assessment. IntechOpen, pp 71–94. https://doi.org/10.5772/54140

  14. Cook ER, Holmes RL (1996) User’s Manual for Program ARSTAN. Laboratory of Tree-Ring Research, University of Arizona, Tucson

    Google Scholar 

  15. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, Berlin

    Google Scholar 

  16. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  17. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7(3):361–370. https://doi.org/10.1177/095968369700700314

    Article  Google Scholar 

  18. Cook ER, Briffa K, Shiyatov S et al (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, pp 104–123

    Google Scholar 

  19. Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian monsoon failure and megadrought during the last millennium. Science 328(5977):486–489. https://doi.org/10.1126/science.1185188

    Article  Google Scholar 

  20. D’Arrigo R, Smerdon JE (2008) Tropical climate influences on drought variability over Java, Indonesia. Geophys Res Lett 35(5):L05707. https://doi.org/10.1029/2007GL032589

    Article  Google Scholar 

  21. D’Arrigo R, Ummenhofer CC (2015) The climate of Myanmar: evidence for effects of the Pacific Decadal Oscillation. Int J Climatol 35(4):634–640. https://doi.org/10.1002/joc.3995

    Article  Google Scholar 

  22. D’Arrigo R et al (2006) Monsoon drought over Java, Indonesia, during the past two centuries. Geophys Res Lett 33(4):L04709. https://doi.org/10.1029/2005gl025465

    Article  Google Scholar 

  23. D’Arrigo R, Palmer J, Ummenhofer CC et al (2011) Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophys Res Lett 38(24):L24705. https://doi.org/10.1029/2011GL049927

    Article  Google Scholar 

  24. D’Arrigo R, Palmer J, Ummenhofer C et al (2013) Myanmar monsoon drought variability inferred by tree rings over the past 300 years: linkages to ENSO. PAGES News 21(2):50–51. https://doi.org/10.22498/pages.21.2.50

    Article  Google Scholar 

  25. Deb JC, Phinn S, Butt N et al (2017) Climatic-induced shifts in the distribution of teak (Tectona grandis) in tropical Asia: implications for forest management and planning. Environ Manag 60(3):422–435. https://doi.org/10.1007/s00267-017-0884-6

    Article  Google Scholar 

  26. Diaz HF, Markgraf V (2000) El Niño and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge

    Google Scholar 

  27. Ding YH (2007) The variability of the Asian summer monsoon. J Meteorol Soc Jpn 85b:21–54. https://doi.org/10.2151/jmsj.85B.21

    Article  Google Scholar 

  28. Domeisen DIV, Garfinkel CI, Butler AH (2019) The teleconnection of El Nino Southern Oscillation to the stratosphere. Rev Geophys 57(1):5–47. https://doi.org/10.1029/2018RG000596

    Article  Google Scholar 

  29. Dutta R (2018) Drought monitoring in the dry zone of Myanmar using MODIS derived NDVI and satellite derived CHIRPS precipitation data. Sustain Agric Res 7(2):46–55. https://doi.org/10.5539/sar.v7n2p46

    Article  Google Scholar 

  30. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  31. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707. https://doi.org/10.1029/2006gl027992

    Article  Google Scholar 

  32. Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  33. Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Pl Sc 31(1):429–467. https://doi.org/10.1146/annurev.earth.31.100901.141251

    Article  Google Scholar 

  34. Gopalakrishnan R, Jayaraman M, Swarnim S, Chaturvedi RK, Bala G, Ravindranath NH (2011) Impact of climate change at species level: a case study of teak in India. Mitig Adapt Strat Glob Change 16:199–209. https://doi.org/10.1007/s11027-010-9258-6

    Article  Google Scholar 

  35. Harris I, Jones PD, Osborn TJ et al (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  36. Haurwitz MW, Brier GW (1981) A critique of the superposed epoch analysis method: its application to solar–weather relations. Mon Weather Rev 109:2074–2079. https://doi.org/10.1175/1520-0493(1981)109%3C2074:Acotse%3E2.0.Co;2

    Article  Google Scholar 

  37. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43(1):69–78

    Google Scholar 

  38. Horton R, De Mel M, Peters D et al (2017) Assessing climate risk in Myanmar: summary for policymakers and planners. Center for Climate Systems Research at Columbia University, WWF-US and WWF-Myanmar, UN Habitat Myanmar, New York. https://myanmar.un.org/sites/default/files/2019-11/ASSESSING-CLIMATE-RISK-IN-MYANMAR_Summary_eng.pdf. Accessed 10 Apr 2020

  39. Htway O, Matsumoto J (2011) Climatological onset dates of summer monsoon over Myanmar. Int J Climatol 31:382–393. https://doi.org/10.1002/joc.2076

    Article  Google Scholar 

  40. IPCC (2014) Climate change 2014—impacts, adaptation, and vulnerability, part a: global and sectoral aspects: summary for policymakers. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA. https://archive.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-FrontMatterA_FINAL.pdf. Accessed 10 Apr 2020

  41. Islam M, Rahman M, Brauning A (2018a) Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate. Front Plant Sci 9:1761. https://doi.org/10.3389/fpls.2018.01761

    Article  Google Scholar 

  42. Islam M, Rahman M, Brauning A (2018b) Long-term wood anatomical time series of two ecologically contrasting tropical tree species reveal differential hydraulic adjustment to climatic stress. Agric For Meteorol 265:412–423. https://doi.org/10.1016/j.agrformet.2018.11.037

    Article  Google Scholar 

  43. Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data. https://doi.org/10.1038/sdata.2017.122

    Article  Google Scholar 

  44. Kondoh A, Harto AB, Eleonora R et al (2004) Hydrological regions in monsoon Asia. Hydrol Process 18:3147–3158. https://doi.org/10.1002/hyp.5754

    Article  Google Scholar 

  45. Kripalani RH, Oh JH, Kulkarni A et al (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90(3–4):133–159. https://doi.org/10.1007/s00704-006-0282-0

    Article  Google Scholar 

  46. Krishna KM (2009) Intensifying tropical cyclones over the North Indian Ocean during summer monsoon—global warming. Glob Planet Change 65(1–2):12–16. https://doi.org/10.1016/j.gloplacha.2008.10.007

    Article  Google Scholar 

  47. Krishnamurthy V, Kirtman BP (2009) Relation between Indian monsoon variability and SST. J Climate 22(17):4437–4458. https://doi.org/10.1175/2009JCLI2520.1

    Article  Google Scholar 

  48. Krishnamurthy L, Krishnamurthy V (2014) Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn 42:2397–2410. https://doi.org/10.1007/s00382-013-1856-z

    Article  Google Scholar 

  49. Kyaw NN (2003) Site influence on growth and phenotype of teak (Tectona grandis Linn. f.) in natural forests of Myanmar. Doctoral dissertation, University of Göttingen

  50. Lau KM, Ramanathan V, Wu GX et al (2008) The joint aerosol-monsoon experiment—a new challenge for monsoon climate research. Bull Am Meteorol Soc 89(3):369–384. https://doi.org/10.1175/BAMS-89-3-369

    Article  Google Scholar 

  51. Li JP, Zheng QC (2003) A new monsoon index and the geographical distribution of the global monsoons. Adv Atmos Sci 20(2):299–302

    Article  Google Scholar 

  52. Li JB, Xie SP, Cook ER et al (2013) El Niño modulations over the past seven centuries. Nat Climate Change 3(9):822–826. https://doi.org/10.1038/nclimate1936

    Article  Google Scholar 

  53. Li ZQ, Lau WM, Ramanathan V et al (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929. https://doi.org/10.1002/2015RG000500

    Article  Google Scholar 

  54. Liang E, Dawadi B, Pederson N, Piao S, Zhu H, Sigdel SR, Chen D (2019) Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records. Sci Bull 64:1018–1023. https://doi.org/10.1016/j.scib.2019.05.002

    Article  Google Scholar 

  55. Limsakul A, Singhruck P (2016) Long-term trends and variability of total and extreme precipitation in Thailand. Atmos Res 169:301–317. https://doi.org/10.1016/j.atmosres.2015.10.015

    Article  Google Scholar 

  56. Mall RK, Singh R, Gupta A et al (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78(2–4):445–478. https://doi.org/10.1007/s10584-005-9042-x

    Article  Google Scholar 

  57. Manton MJ, Della-Marta PM, Haylock MR et al (2001) Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int J Climatol 21(3):269–284. https://doi.org/10.1002/joc.610

    Article  Google Scholar 

  58. Meko D, Graybill DA (1995) Tree-ring reconstruction of upper Gila river discharge. Water Resour Bull 31(4):605–616

    Article  Google Scholar 

  59. Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26(11):1589–1600. https://doi.org/10.1175/1520-0450(1987)026%3c1589:Cviscf%3e2.0.Co;2

    Article  Google Scholar 

  60. NECC (2012) Myanmar’s national adaptation programme of action (NAPA) to climate change. National Coordinating Body. National Environmental Conservation Committee (NECC), Ministry of Environmental Conservation and Forestry, Myanmar. https://unfccc.int/resource/docs/napa/mmr01.pdf. Accessed 10 Apr 2020

  61. Osborn TJ, Biffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time series. Dendrochronologia 15:89–99

    Google Scholar 

  62. Paik S, Min SK, Iles CE, Fischer EM, Schurer AP (2020) Volcanic-induced global monsoon drying modulated by diverse El Nino responses. Sci Adv 6(21):eaba1212. https://doi.org/10.1126/sciadv.aba1212

    Article  Google Scholar 

  63. Pandey D, Brown C (2000) Teak: a global overview. Unasylva 201(51):3–13

    Google Scholar 

  64. Panthi S, Brauning A, Zhou ZK et al (2017) Tree rings reveal recent intensified spring drought in the central Himalaya, Nepal. Glob Planet Change 157:26–34. https://doi.org/10.1016/j.gloplacha.2017.08.012

    Article  Google Scholar 

  65. Priya PB, Bhat KM (1998) False ring formation in teak (Tectona grandis LF) and the influence of environmental factors. For Ecol Manag 108:215–222. https://doi.org/10.1016/S0378-1127(98)00227-8

    Article  Google Scholar 

  66. Pumijumnong N (2012) Teak tree ring widths: ecology and climatology research in northwest Thailand. Sci Technol Dev 31:165–174

    Google Scholar 

  67. Pumijumnong N, Eckstein D, Sass U (1995) Tree-ring research on Tectona grandis in northern Thailand. IAWA J 16(4):385–392. https://doi.org/10.1163/22941932-90001428

    Article  Google Scholar 

  68. Pumijumnong N, Eckstein D, Park WK (2001) Teak tree-ring chronologies in Myanmar—a first attempt. Palaeobotanist 50:35–40

    Google Scholar 

  69. Pumijumnong N, Muangsong C, Buajan S et al (2019) Climate variability over the past 100 years in Myanmar derived from tree-ring stable oxygen isotope variations in Teak. Theor Appl Climatol 139(3–4):1401–1414. https://doi.org/10.1007/s00704-019-03036-y

    Article  Google Scholar 

  70. Pumijumnong N, Muangsong C, Buajan S et al (2020) Effects of the Pacific Decadal Oscillation on Thailand monsoon rainfall derived from a 194-year tree ring width chronology of teak trees from northwestern Thailand. Int J Biometeorol 64:1481–1495. https://doi.org/10.1007/s00484-020-01926-9

    Article  Google Scholar 

  71. Qian WH, Lee DK (2000) Seasonal march of Asian summer monsoon. Int J Climatol 20(11):1371–1386. https://doi.org/10.1002/1097-0088(200009)20:11%3c1371::AID-JOC538%3e3.0.CO;2-V

    Article  Google Scholar 

  72. Rahman M, Islam M, Bräuning A (2019) Species-specific growth resilience to drought in a mixed semi-deciduous tropical moist forest in South Asia. For Ecol Manag 433:487–496. https://doi.org/10.1016/j.foreco.2018.11.034

    Article  Google Scholar 

  73. Ram S, Borgaonkar H, Sikder A (2008) Tree-ring analysis of teak (Tectona grandis LF) in central India and its relationship with rainfall and moisture index. J Earth Syst Sci 117(5):637–645. https://doi.org/10.1007/s12040-008-0058-2

    Article  Google Scholar 

  74. Rinn F (2003) TSAP-win user reference manual. Rinntech, Heidelberg

    Google Scholar 

  75. Sano M, Buckley BM, Sweda T (2009) Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Climate Dyn 33:331–340. https://doi.org/10.1007/s00382-008-0454-y

    Article  Google Scholar 

  76. Schollaen K, Heinrich I, Neuwirth B et al (2013) Multiple tree-ring chronologies (ring width, delta C-13 and delta O-18) reveal dry and rainy season signals of rainfall in Indonesia. Quat Sci Rev 73:170–181. https://doi.org/10.1016/j.quascirev.2013.05.018

    Article  Google Scholar 

  77. Sein ZMM, Zhi XF (2016) Interannual variability of summer monsoon rainfall over Myanmar. Arab J Geosci 9(6):469. https://doi.org/10.1007/s12517-016-2502-y

    Article  Google Scholar 

  78. Sein ZMM, Ogwang BA, Ongoma V et al (2015) Inter-annual variability of summer monsoon rainfall over Myanmar in relation to IOD and ENSO. J Environ Agric Sci 4:28–36

    Google Scholar 

  79. Sein KK, Chidthaisong A, Oo KL (2018) Observed trends and changes in temperature and precipitation extreme indices over Myanmar. Atmosphere 9(12):477. https://doi.org/10.3390/atmos9120477

    Article  Google Scholar 

  80. Sen Roy N, Kaur S (2000) Climatology of monsoon rains of Myanmar (Burma). Int J Climatol 20(8):913–928. https://doi.org/10.1002/1097-0088(20000630)20:8%3c913::AID-JOC485%3e3.0.CO;2-U

    Article  Google Scholar 

  81. Shah SK, Bhattacharyya A, Chaudhary V (2007) Reconstruction of June–September precipitation based on tree-ring data of teak (Tectona grandis L.) from Hoshangabad, Madhya Pradesh, India. Dendrochronologia 25(1):57–64. https://doi.org/10.1016/j.dendro.2007.02.001

    Article  Google Scholar 

  82. Shah SK, Pandey U, Mehrotra N (2018) Precipitation reconstruction for the Lidder Valley, Kashmir Himalaya using tree-rings of Cedrus deodara. Int J Climatol 38:E758–E773. https://doi.org/10.1002/joc.5405

    Article  Google Scholar 

  83. Singh D, Seager R, Cook BI, Cane M, Ting MF, Cook E, Davis M (2018) Climate and the global famine of 1876–78. J Climate 31(23):9445–9467. https://doi.org/10.1175/JCLI-D-18-0159.1

    Article  Google Scholar 

  84. Singh M et al (2020) Fingerprint of volcanic forcing on the ENSO-Indian monsoon coupling. Sci Adv 6(38):eaba8164. https://doi.org/10.1126/sciadv.aba8164

    Article  Google Scholar 

  85. Slagle JT (2014) Climate change in Myanmar: impacts and adaptation. Dissertation, Naval Postgraduate School, California

  86. Than MU, Hla TS, Ye NY (2011) Overview of droughts in Myanmar. In: Shaw R, Nguyen H (eds) Droughts in Asian Monsoon Region (community, environment and disaster risk management). Emerald Group Publishing Limited, pp 87–95. https://doi.org/10.1108/S2040-7262(2011)0000008011

  87. Thein HM, Kanzaki M, Fukushima M (2007) Structure and composition of a teak-bearing forest under the Myanmar Selection System. Jpn J Southeast Asian Stud 45(3):303–316

    Google Scholar 

  88. Touchan R, Xoplaki E, Funkhouser G et al (2005) Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dyn 25(1):75–98. https://doi.org/10.1007/s00382-005-0016-5

    Article  Google Scholar 

  89. Trouet V, Van Oldenborgh GJ (2013) KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree Ring Res 69(1):3–13. https://doi.org/10.3959/1536-1098-69.1.3

    Article  Google Scholar 

  90. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Climate 23(7):1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  91. Wang B (2006) The Asian monsoon. Springer Science and Business Media. https://doi.org/10.1007/3-540-37722-0

  92. Webster PJ, Yang S (1992) Monsoon and ENSO—selectively interactive systems. Q J Roy Meteorol Soc 118(507):877–926. https://doi.org/10.1256/smsqj.50704

    Article  Google Scholar 

  93. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213. https://doi.org/10.1175/1520-0450(1984)023%3c0201:OTAVOC%3e2.0.CO%3B2

    Article  Google Scholar 

  94. Xu CX, Sano M, Nakatsuka T (2011) Tree ring cellulose delta O-18 of Fokienia hodginsii in northern Laos: a promising proxy to reconstruct ENSO? J Geophys Res Atmos 116:D24109. https://doi.org/10.1029/2011JD016694

    Article  Google Scholar 

  95. Xu CX, Pumijumnong N, Nakatsuka T et al (2015) A tree-ring cellulose delta O-18-based July–October precipitation reconstruction since AD 1828, northwest Thailand. J Hydrol 529:433–441. https://doi.org/10.1016/j.jhydrol.2015.02.037

    Article  Google Scholar 

  96. Xu CX, An WL, Wang SYS et al (2019) Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole. Sci Total Environ 661:645–653. https://doi.org/10.1016/j.scitotenv.2019.01.186

    Article  Google Scholar 

  97. Yi T, Hla W, Htun A (2012) Drought conditions and management strategies in Myanmar. Country Report Prepared for United Nations-Water. https://www.droughtmanagement.info/literature/UNW-DPC_NDMP_Country_Report_Myanmar_2014.pdf. Accessed 10 Apr 2020

  98. Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74. https://doi.org/10.1016/j.dendro.2012.08.001

    Article  Google Scholar 

  99. Zang C, Biondi F (2015) treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography 38(4):431–436. https://doi.org/10.1111/ecog.01335

    Article  Google Scholar 

  100. Zaw Z, Fan ZX, Bräuning A et al (2020) Drought reconstruction over the past two centuries in southern Myanmar using teak tree-rings: linkages to the Pacific and Indian Oceans. Geophys Res Lett 47(10):e2020GL087627. https://doi.org/10.1029/2020GL087627

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Forest Department of Myanmar for permitting us teak tree-ring sampling. We appreciate Brendan M. Buckley, Chenxi Xu, and Rosanne D’Arrigo for contributing their tree-ring data. This research was financially supported by the National Natural Science Foundation of China (NSFC, 31861133007, 31770533), the National Key Research Development Program of China (2016YFC0502105), the Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences (Y4ZK111B01), and the CAS 135 program (2017XTBG-T01). ZZ was supported by the CAS-TWAS President’s Ph.D. Fellowship Programme (2016CTF157) for his doctoral study. We also thank three anonymous reviewers for their valuable comments and suggestions to improve the quality of the manuscript. We all have no conflicts of interest regarding this publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ze-Xin Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6878 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaw, Z., Fan, ZX., Bräuning, A. et al. Monsoon precipitation variations in Myanmar since AD 1770: linkage to tropical ocean‐atmospheric circulations. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05645-8

Download citation

Keywords

  • El Niño-Southern Oscillation (ENSO)
  • Monsoon hydroclimate variability
  • Myanmar
  • Tectona grandis (teak)
  • Tree ring‐width