Armour KC, Marshall J, Scott JR et al (2016) Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci 9:549–554. https://doi.org/10.1038/ngeo2731
Article
Google Scholar
Banks H, Wood R, Gregory J (2002a) Changes to Indian Ocean Subantarctic Mode Water in a coupled climate model as CO2 forcing increases. J Phys Oceanogr 32:2816–2827. https://doi.org/10.1175/1520-0485(2002)032%3c2816:ctiosm%3e2.0.co;2
Article
Google Scholar
Banks HT, Wood R, Gregory J (2002b) Changes to Indian Ocean subantarctic mode water in a coupled climate model as CO2 forcing increases. J Phys Oceanogr 32:2816–2827. https://doi.org/10.1175/1520-0485(2002)032%3c2816:CTIOSM%3c2.0.CO;2
Article
Google Scholar
Cai W, Cowan T, Godfrey S, Wijffels S (2010) Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J Clim 23:197–206
Article
Google Scholar
de Boyer MC, Madec G, Fischer AS et al (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res C Ocean 109:1–20. https://doi.org/10.1029/2004JC002378
Article
Google Scholar
Dickinson RE (1981) Convergence rate and stability of ocean-atmosphere coupling schemes with a zero-dimensional climate model. J Atmos Sci 38:2112–2120. https://doi.org/10.1175/1520-0469(1981)038%3c2112:CRASOO%3e2.0.CO;2
Article
Google Scholar
Dong S, Sprintall J, Gille ST, Talley L (2008a) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res 113:6013. https://doi.org/10.1029/2006JC004051
Article
Google Scholar
Dong S, Sprintall J, Gille ST, Talley L (2008b) Southern ocean mixed-layer depth from Argo float profiles. J Geophys Res Ocean. https://doi.org/10.1029/2006JC004051
Article
Google Scholar
Downes SM, Bindoff NL, Rintoul SR (2009) Impacts of climate Change on the subduction of mode and intermediate water masses in the Southern Ocean. J Clim 22:3289–3302. https://doi.org/10.1175/2008JCLI2653.1
Article
Google Scholar
Downes SM, Bindoff NL, Rintoul SR (2010) Changes in the subduction of Southern Ocean water masses at the end of the twenty-first century in eight IPCC models. J Clim 23:6526–6541. https://doi.org/10.1175/2010JCLI3620.1
Article
Google Scholar
Downes SM, Langlais C, Brook JP, Spence P (2017) Regional impacts of the westerly winds on Southern Ocean mode and intermediate water subduction. J Phys Oceanogr 47:2521–2530. https://doi.org/10.1175/JPO-D-17-0106.1
Article
Google Scholar
Gao L, Rintoul SR, Yu W (2018) Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat Clim Chang 8:58–63. https://doi.org/10.1038/s41558-017-0022-8
Article
Google Scholar
Hanawa K, Talley LD (2001) Chapter 5.4 Mode waters. Int Geophys 77:373–386. https://doi.org/10.1016/S0074-6142(01)80129-7
Article
Google Scholar
Hoffert MI, Callegari AJ, Hsieh C-T (1980) The role of deep sea heat storage in the secular response to climatic forcing. J Geophys Res 85:6667–6679. https://doi.org/10.1029/JC085iC11p06667
Article
Google Scholar
Hong Y, Du Y, Qu T et al (2020) Variability of the subantarctic mode water volume in the south indian ocean during 2004–2018. Geophys Res Lett. https://doi.org/10.1029/2020GL087830
Article
Google Scholar
Kolodziejczyk N, Llovel W, Portela E (2019) Interannual variability of upper ocean water masses as inferred from argo array. J Geophys Res Ocean 124:6067–6085. https://doi.org/10.1029/2018JC014866
Article
Google Scholar
Langlais CE, Lenton A, Matear R et al (2017) Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci Rep 7:17076. https://doi.org/10.1038/s41598-017-17292-3
Article
Google Scholar
Lemons J (1983) Atmospheric carbon dioxide. Environ Ethics 5:21–32. https://doi.org/10.5840/enviroethics19835132
Article
Google Scholar
Llovel W, Terray L (2016) Observed southern upper-ocean warming over 2005–2014 and associated mechanisms. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/12/124023
Article
Google Scholar
Long SM, Xie SP, Zheng XT, Liu Q (2014) Fast and slow responses to global warming: sea surface temperature and precipitation patterns. J Clim 27:285–299. https://doi.org/10.1175/JCLI-D-13-00297.1
Article
Google Scholar
Manabe S, Bryan K, Spelman MJ (1990) Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749. https://doi.org/10.1175/1520-0485(1990)020%3c0722:TROAGO%3e2.0.CO;2
Article
Google Scholar
Marshall JC, Nurser AJG, Williams RG (1993) Inferring the subduction rate and period over the North Atlantic. J Phys Oceanogr 23:1315–1329
Article
Google Scholar
McCartney MS (1977) Subantarctic Mode Water. A voyage of discovery: George Deacon 70th Anniversary Volume, In: M Angel (Ed.), Pergamon Press. 103–119
Meijers AJS (2014) The southern ocean in the coupled model intercomparison project phase 5. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2013.0296
Article
Google Scholar
Meijers AJS, Cerovečki I, King BA, Tamsitt V (2019) A see-saw in pacific subantarctic mode water formation driven by atmospheric modes. Geophys Res Lett 46:13152–13160. https://doi.org/10.1029/2019GL085280
Article
Google Scholar
Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. https://doi.org/10.1007/s10584-011-0156-z
Article
Google Scholar
Portela E, Kolodziejczyk N, Maes C, Thierry V (2020) Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J Phys Oceanogr 50:361–381. https://doi.org/10.1175/JPO-D-19-0128.1
Article
Google Scholar
Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res D Atmos. https://doi.org/10.1029/2002jd002670
Article
Google Scholar
Rintoul SR, England MH (2002) Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water. J Phys Oceanogr 32:1308–1321. https://doi.org/10.1175/1520-0485(2002)032%3c1308:ETDLAS%3e2.0.CO;2
Article
Google Scholar
Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. https://doi.org/10.1126/science.1097403
Article
Google Scholar
Sallée JB, Speer K, Rintoul S, Wijffels S (2010) Southern ocean thermocline ventilation. J Phys Oceanogr 40:509–529. https://doi.org/10.1175/2009JPO4291.1
Article
Google Scholar
Sallée JB, Shuckburgh E, Bruneau N et al (2013a) Assessment of southern ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J Geophys Res Ocean 118:1830–1844. https://doi.org/10.1002/jgrc.20135
Article
Google Scholar
Sallée JB, Shuckburgh E, Bruneau N et al (2013b) Assessment of southern ocean mixed-layer depths in CMIP5 models: historical bias and forcing response. J Geophys Res Ocean 118:1845–1862. https://doi.org/10.1002/jgrc.20157
Article
Google Scholar
Sloyan BM, Rintoul SR (1980) Circulation, renewal, and modification of antarctic mode and intermediate water. J Phys Oceanogr 31:1005–1030
Article
Google Scholar
Son SW, Gerber EP, Perlwitz J et al (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res Atmos. https://doi.org/10.1029/2010JD014271
Article
Google Scholar
Stouffer RJ (2004) Time scales of climate response. J Clim 17:209–217. https://doi.org/10.1175/1520-0442(2004)017%3c0209:TSOCR%3e2.0.CO;2
Article
Google Scholar
Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39:6–11. https://doi.org/10.1029/2012GL052810
Article
Google Scholar
Tamsitt V, Cerovečki I, Josey SA et al (2020) Mooring observations of air-sea heat fluxes in two subantarctic mode water formation regions. J Clim 33:2757–2777. https://doi.org/10.1175/jcli-d-19-0653.1
Article
Google Scholar
Xu L, Xie SP, Liu Q (2013) Fast and slow responses of the North Pacific mode water and Subtropical Countercurrent to global warming. J Ocean Univ China 12:216–221. https://doi.org/10.1007/s11802-013-2189-6
Article
Google Scholar